X-Ray CT Scatter Correction by a Physics Motivated DNN with Opposite View Processing

Berk Iskender and Yoram Bresler

Coordinated Science Lab and Department of ECE University of Illinois, Urbana-Champaign

The 6th International Conference on Image Formation in X-Ray Computed Tomography

ECE ILLINOIS

This work was supported in part by the National Science Foundation (NSF) under Grant IIS 14-47879.

Problem Statement

Assumption: Beer's Law

 $p(t,\theta) = I_0 e^{-g(t,\theta)}, \ g(t,\theta) = (Rf)(t,\theta)$

 I_0 : vacuum (air) measurement, f(x): object, $x \in \mathbb{R}^2$, R: 2D Radon transform p: primary measurement, g: line integral projection, $t \in \mathbb{R}^d$, $\theta \in [0, 2\pi)$

Reality: Scattering causes a <u>change in the direction</u> (and energy) of the photon

 $\tau(t,\theta) = p(t,\theta) + s(t,\theta), \quad s(t,\theta) \ge 0$

 $\tau \triangleq \{\tau_{\theta}, \theta \in \Theta\}$: Set of total (scatter corrupted) measurements, $p \triangleq \{p_{\theta}, \theta \in \Theta\}$: Set of primary (scatter-free) measurements $s \triangleq \{s_{\theta}, \theta \in \Theta\}$: Scatter term (nonlinear function of f)

Reconstruction

٠

Scatter – free:
$$g(t,\theta) = -\ln \frac{p(t,\theta)}{I_0} \rightarrow f(\mathbf{x}) = (R^{-1}g)(\mathbf{x})$$

 I_0 : vacuum (air) measurement,

 R^{-1} : FBP algorithm

$$g(t,\theta) = -\ln\frac{\tau(t,\theta)}{I_0} = -\ln\frac{p(t,\theta) + s(t,\theta)}{I_0} \implies \tilde{f}(x) = \left(R^{-1}\tilde{g}\right)(x) \neq f(x)$$

Proposed Method

- A new physics-motivated, deep learning-based method to estimate and correct scatter in projection measurements
- New features: 1) Incorporates both scatter-corrupted measurements τ_{θ} + initial reconstruction \tilde{f}_{θ}

Scatter estimate for each view angle θ depends on the entire object

2) Uses equality (up to flip) of scatter-free projections in opposite directions

3) DCNN architecture inspired by scatter-physics

4) For training, uses a physics-adapted loss function

• Operates on normalized quantities, $\bar{\tau}_{\theta} = \tau_{\theta}/I_0$, $\bar{p}_{\theta} = p_{\theta}/I_0$, $\bar{s}_{\theta} = s_{\theta}/I_0$ \longrightarrow applicable for various I_0

Opposite View Processing

- π -opposite view projections are identical (up to a flip in t)
- Difference of π -opposite scatter components:
- Needs to be estimated:

$$\hat{g}(t,\theta+\pi) \triangleq g(-t,\theta+\pi) = g(t,\theta)$$

$$\tau_{\theta} - \hat{\tau}_{\theta+\pi} = p_{\theta} + s_{\theta} - \hat{p}_{\theta+\pi} - \hat{s}_{\theta+\pi} \triangleq \Delta s_{\theta}$$

$$b_{\theta} \triangleq s_{\theta} + \hat{s}_{\theta+\pi}$$

• Δs_{θ} higher bandwidth & b_{θ} typically smoother $\implies b_{\theta}$ may be easier to estimate by a DCNN

• Finally,
$$p_{\theta} = rac{\tau_{\theta} + \hat{\tau}_{\theta+\pi} - b_{\theta}}{2}$$

Block Diagram & Loss Function

• After processing all views,

$$f^*(x) = (R^{-1}g^*)(x)$$

Loss function, *L*, for training the network:

$$L(g,g^*) = \min_{\gamma} \sum_{\theta \in \Theta} \|h * (g_{\theta} - g_{\theta}^*)\|_2^2 + \lambda \|g_{\theta} - g_{\theta}^*\|_1$$

- $h[n] = \frac{1}{2}\delta[n+1] \frac{1}{2}\delta[n-1], \ \lambda > 0$
- L is tailored to express errors in the reconstructed image, $f^*(x)$

(1) Particular *h* selection

(2) Post-log quantities g are used rather than p

Filter h

- Enables to express the norm of an image-domain error in the projection domain \longrightarrow No need for FBP in L($||Qf||_2$ in terms of g_{θ}, Q : a radially symmetric filter)
- Edges are perceptually significant $\longrightarrow Q$ is HPF
- Using Parseval's identity & projection-slice theorem

$$\longrightarrow \|Qf\|_2^2 = \|h * g\|_2^2$$

• Using Shepp-Logan filter in FBP and $Q(\nu) = |\nu|^{0.5}$ Short time-domain filter

$$h[n] = \frac{1}{2}\delta[n+1] - \frac{1}{2}\delta[n-1]$$

DCNN, N_{γ}

- Inspired by the Slice-by-Slice approach (Bai et al 2000)
- Inputs:
 - Sum of pre-log π -opposite total measurements at θ :
 - ii. Difference of same measurements at θ :
 - iii. Initial reconstruction estimate, rotated by θ :
- Output:
 - i. Normalized scatter component estimate:

$$\bar{\tau}_{\theta} + \hat{\bar{\tau}}_{\theta+\pi} \in \mathbb{R}^{d}$$
$$\bar{\tau}_{\theta} - \hat{\bar{\tau}}_{\theta+\pi} \in \mathbb{R}^{d}$$
$$\tilde{f}_{\theta} \in \mathbb{R}^{d^{2}}$$

$$\bar{s}_{\theta}^* = N_{\gamma} \left(\tilde{f}_{\theta}, \bar{\tau}_{\theta} + \hat{\bar{\tau}}_{\theta+\pi}, \bar{\tau}_{\theta} - \hat{\bar{\tau}}_{\theta+\pi} \right) \in \mathbb{R}^d$$

Results

Ground Truth f

using primary meas. p_{θ}

	Uncor.	DSE-1D	Proposed SW	Proposed
PSNR	31.05	37.19	43.83	45.90
SSIM	0.92	0.90	0.98	0.98
MAE	42.4	38.3	14.5	15.3

Table: Average reconstruction accuracies

Proposed

Uncorrected

DSE-1D[†]

Proposed -

Single View

Recovered f^*

Recon Error: $\Delta f = f - \tilde{f}$

[†] J. Maier et al., "Deep Scatter Estimation (DSE): Accurate real-time scatter estimation for X-ray CT using a deep convolutional neural network," *Jour. of Nondest. Eval.*, vol. 37, no. 3, 2018.

Conclusions

- Scattering in X-ray CT produces various degradations in the reconstructions
- A data-driven approach with using both scatter-corrupted meas. and initial reconstruction

DCNN architecture inspired by scatter-physics

physics-motivated cost function and constraints

leveraging π – *opposite* equality of projections

• Performs better compared to other methods

Future Work

- Implementing the method for other CT geometries
- Extending the experiments to polychromatic beam setting & 3D reconstructions

References

- 1. Floyd C E, Jaszczak R J, Harris C C and Coleman R E 1984 Energy and spatial distribution of multiple order Compton scatter in SPECT: a Monte Carlo investigation *Phys. Med. Biol.* **29** 1217-30
- 2. H. E. Johns and J. R. Cunningham, *The physics of Radiology*, *Third edition* (Thomas, Springfield, Illinois, 1971), p. 167.
- 3. Poludniowski, G., et al. "An efficient Monte Carlo-based algorithm for scatter correction in keV cone-beam CT." *Physics in Medicine* & *Biology* 54.12 (2009): 3847.
- 4. C. Bai, G. L. Zeng, and G. T. Gullberg, "A slice-by-slice blurring model and kernel evaluation using the Klein Nishina formula for 3D scatter compensation in parallel and converging beam spect," *Phys. Med. Biol.*, vol. 45, no. 5, 2000.
- 5. B. Iskender and Y. Bresler, "A Physics-Motivated DNN for X-Ray CT Scatter Correction," 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), Iowa City, IA, USA, 2020.
- 6. A. Maslowski et al., "Acuros CTS: A fast, linear Boltzmann transport equation solver for computed tomography scatter–Part I: Core algorithms and validation", *Med. Phys.*, vol. 45, no. 5, 2018
- 7. B Ohnesorge, T Flohr, and K Klingenbeck-Regn, "Efficient object scatter correction algorithm for third and fourth generation CT scanners," *European radiology*, vol. 9, no. 3, 1999.
- 8. J. Maier et al., "Deep Scatter Estimation (DSE): Accurate real-time scatter estimation for X-ray CT using a deep convolutional neural network," *Jour. of Nondest. Eval.*, vol. 37, no. 3, 2018.