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Problem Statement

𝑝 𝑡, 𝜃 = 𝐼0𝑒
−𝑔 𝑡,𝜃 , 𝑔 𝑡, 𝜃 = 𝑅𝑓 𝑡, 𝜃

Reconstruction Scatter − free: 𝑔 𝑡, 𝜃 = − ln
𝑝 𝑡,𝜃

𝐼0
→ 𝑓 𝒙 = 𝑅−1𝑔 𝒙

𝐼0: vacuum (air) measurement ,

𝑅−1: FBP algorithm
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𝜏 ≜ {𝜏𝜃, 𝜃 ∈ Θ}: Set of total (scatter corrupted) measurements,  𝑝 ≜ {𝑝𝜃, 𝜃 ∈ Θ}: Set of primary (scatter-free) measurements

𝑠 ≜ {𝑠𝜃, 𝜃 ∈ Θ}: Scatter term (nonlinear function of 𝒇)

• Reality: Scattering causes a change in the direction (and energy) of the photon

𝜏 𝑡, 𝜃 = 𝑝 𝑡, 𝜃 + 𝑠 𝑡, 𝜃 ,        𝑠 𝑡, 𝜃 ≥ 0

𝐼0: vacuum (air) measurement ,    𝑓 𝒙 : object, 𝑥 ∈ ℝ2, 𝑅: 2D Radon transform
𝑝: primary measurement, 𝑔: line integral projection, 𝑡 ∈ ℝ𝑑, 𝜃 ∈ [0, 2𝜋)

Assumption: Beer’s Law
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Proposed Method
• A new physics-motivated, deep learning-based method to estimate and correct scatter in projection 

measurements

• New features: 1) Incorporates both scatter-corrupted measurements 𝜏𝜃 + initial reconstruction ሚ𝑓𝜃

Scatter estimate for each view angle θ depends on the entire object

2) Uses equality (up to flip) of scatter-free projections in opposite directions

3) DCNN architecture inspired by scatter-physics

4) For training, uses a physics-adapted loss function

• Operates on normalized quantities, ҧ𝜏𝜃 = 𝜏𝜃/𝐼0, ഥ𝑝𝜃 = 𝑝𝜃/𝐼0,  ҧ𝑠𝜃 = 𝑠𝜃/𝐼0 applicable for various 𝐼0

3



Opposite View Processing
● 𝜋-opposite view projections are identical (up to a flip in 𝑡) 

● Difference of 𝜋-opposite scatter components: 𝜏𝜃 − Ƹ𝜏𝜃+𝜋 = 𝑝𝜃 + 𝑠𝜃 − Ƹ𝑝𝜃+𝜋 − Ƹ𝑠𝜃+𝜋 ≜ Δ𝑠𝜃

● Needs to be estimated: 𝑏𝜃 ≜ 𝑠𝜃 + Ƹ𝑠𝜃+𝜋

● Δ𝑠𝜃 higher bandwidth & 𝑏𝜃 typically smoother 𝑏𝜃 may be easier to estimate by a DCNN

● Finally,  𝑝𝜃 =
𝜏𝜃+ො𝜏𝜃+𝜋 −𝑏𝜃
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Δs𝜃 𝑏𝜃
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𝑝𝜃 ≤ 𝐼0

Block Diagram & Loss Function

• After processing all views,

𝑓∗ 𝒙 = (𝑅−1𝑔∗)(𝒙)

Loss function, 𝑳, for training the network:

𝐿 𝑔, 𝑔∗ = min
𝛾

෍

𝜃∈Θ

ℎ ∗ 𝑔𝜃 − 𝑔𝜃
∗

2
2 + 𝜆 𝑔𝜃 − 𝑔𝜃

∗
1

• ℎ 𝑛 =
1

2
𝛿 𝑛 + 1 −

1

2
𝛿[𝑛 − 1],  𝜆 > 0

• 𝑳 is tailored to express errors in the reconstructed image,  𝑓∗(𝒙)

(2) Post-log quantities 𝑔 are used rather than 𝑝 5(1) Particular ℎ selection

𝑝𝜃 > 0

2 ҧ𝑝𝜃 + ത𝑏𝜃



Filter 𝒉

• Enables to express the norm of an image-domain error in the projection domain              No need for FBP in 𝑳

• Edges are perceptually significant                  𝑄 is HPF

• Using Parseval’s identity & projection-slice theorem

• Using Shepp-Logan filter in FBP and 𝑄 𝜈 = 𝜈 0.5
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Short time-domain filter

( 𝑄𝑓
2

in terms of 𝑔𝜃, 𝑄: a radially symmetric filter )

ℎ 𝑛 =
1

2
𝛿 𝑛 + 1 −

1

2
𝛿[𝑛 − 1]

𝑄𝑓 2
2 = ℎ ∗ 𝑔 2
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DCNN, 𝑵𝜸

• Inspired by the Slice-by-Slice approach (Bai et al 2000)

• Inputs:

i. Sum of pre-log 𝜋-opposite total measurements at 𝜃:  ҧ𝜏𝜃 + መҧ𝜏𝜃+𝜋 ∈ ℝ𝑑

ii. Difference of same measurements at 𝜃: ҧ𝜏𝜃 − መҧ𝜏𝜃+𝜋 ∈ ℝ𝑑

iii. Initial reconstruction estimate, rotated by 𝜃: ሚ𝑓𝜃 ∈ ℝ𝑑2

• Output:

i. Normalized scatter component estimate: ҧ𝑠𝜃
∗ = 𝑁𝛾

ሚ𝑓𝜃 , ҧ𝜏𝜃 + መҧ𝜏𝜃+𝜋, ҧ𝜏𝜃 − መҧ𝜏𝜃+𝜋 ∈ ℝ𝑑
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ሚ𝑓𝜃

ҧ𝜏𝜃 − መҧ𝜏𝜃+𝜋

ҧ𝑠𝜃
∗(t)

t

t

ҧ𝜏𝜃 + መҧ𝜏𝜃+𝜋



Results
Uncorrected

using primary meas. 𝑝𝜃

DSE-1D†

Proposed –

Single View

Recovered 𝑓∗ 1D line profiles

Table: Average reconstruction accuracies
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Ground Truth 𝑓

Uncor. DSE-1D Proposed SW Proposed

PSNR 31.05 37.19 43.83 45.90

SSIM 0.92 0.90 0.98 0.98

MAE 42.4 38.3 14.5 15.3

Proposed

Recon Error:
𝚫𝒇 = 𝒇 − ෩𝒇

† J. Maier et al., “Deep Scatter Estimation (DSE): Accurate real-time scatter 

estimation for X-ray CT using a deep convolutional neural network,” Jour. of 

Nondest. Eval., vol. 37, no. 3, 2018. 



Conclusions

• Scattering in X-ray CT produces various degradations in the reconstructions

• A data-driven approach with using both scatter-corrupted meas. and initial reconstruction

DCNN architecture inspired by scatter-physics

physics-motivated cost function and constraints

leveraging 𝜋 − 𝑜𝑝𝑝𝑜𝑠𝑖𝑡𝑒 equality of projections

• Performs better compared to other methods

• Implementing the method for other CT geometries

• Extending the experiments to polychromatic beam setting & 3D reconstructions
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Future Work
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