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Detector Plane
Problem Statement 0 =6
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Assumption: Beer’s Law

p(t,0) = I,e 90, g(t,0) = (Rf)(¢t,6)

Iy: vacuum (air) measurement, f(x): object, x € R?, R: 2D Radon transform

.
p: primary measurement, g: line integral projection, t € R%, 6 € [0, 2mr) Qi

Reality: Scattering causes a change in the direction (and energy) of the photon '\,\'\

(t,0) = p(t,0) + 5(t,6), s(t,6) =0 NN

Source at g —a

T 2 {14,0 € 0}: Set of total (scatter corrupted) measurements, p £ {pg, 0 € 0}: Set of primary (scatter-free) measurements

s £ {sg,0 € 0}: Scatter term (nonlinear function of f)

Reconstruction Scatter — free: g(t,0) = —1In p(lt(;g) - f(x) =R 1)

I: vacuum (air) measurement ,
R~1: FBP algorithm g (t, 9) =—1In T(t’ 0) —_In p(t’ 0) * S(t’ (9)

0 0
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Proposed Method

A new physics-motivated, deep learning-based method to estimate and correct scatter in projection
measurements

New features: 1) Incorporates both scatter-corrupted measurements 7, + initial reconstruction f;

mmm) Scatter estimate for each view angle 8 depends on the entire object

2) Uses equality (up to flip) of scatter-free projections in opposite directions

3) DCNN architecture inspired by scatter-physics

4) For training, uses a physics-adapted loss function

Operates on normalized quantities, Tg = 19 /Iy, Do = Pg/lo, Sg = Sg/l) =y applicable for various I,



Opposite View Processing
e m-opposite view projections are identical (uptoaflipint) ==mp ('[, 6 + 77) = g (—'[, 6 + 7[) =0 (t, 6’)
e Difference of m-opposite scatter components: Tg — To4n =/p{+ Sg — % — Sg4r = Asg

o Needs to be estimated: bg £ sg + Sgir

e Asgy higher bandwidth & by typically smoother === b, may be easier to estimate by a DCNN
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Block Diagram & Loss Function
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«  After processing all views,
fr(x) =R g
Loss function, L, for training the network:

L(g.9") = min > llh * (g5 — g3)I3 + Zllgo — gl
00

© h[n]=36ln+1]-58n—1],1>0

« Listailored to express errors in the reconstructed image, f*(x)

(1) Particular h selection (2) Post-log quantities g are used rather than p




Filter h

Enables to express the norm of an image-domain error in the projection domain === No need for FBP in L

(|1Qf] |2 in terms of gy, Q: a radially symmetric filter )

Edges are perceptually significant === (Q is HPF

Using Parseval’s identity & projection-slice theorem == | lIQflI5 = ||k * gl|5

Using Shepp-Logan filter in FBP and Q(v) = |v|%® # Short time-domain filter

1 1
h[n] =E5[n+ 1] —56[n— 1]




DCNN, N,

« Inspired by the Slice-by-Slice approach (Bai et al 2000)

¢ Inputs:
i.  Sum of pre-log m-opposite total measurements at 6: Tg + Tgsq € RY
i. Difference of same measurements at 6: Tg — Tgiq € RY
ii. Initial reconstruction estimate, rotated by 6: fo € R4
¢ Output:
i. Normalized scatter component estimate: Sp = Ny(fg,fg + Tosm To — ?94_”) € R4
To + To+n —
Sg (1)
1—_9 _ 7,%94_71- .. - W

fo

v e

[ => :1D conv. layer (conv. in y) + ReLU:

‘ o,2) = ReLU(f(3,2)  h(y))
s15:dx o | s20:dx " @ :z-concatenate: for n inputs, stacks

- inputs in z-coordinate

o ¢ :Batch normalization

--» : Skip connections 7




Results
Ground Truth f

using primary meas. pg

DSE-1D | Proposed SW
PSNR 37.19 | 43.83 Proposed —
Single View
SSIM 0.90 0.98
MAE 38.3 14.5

Table: Average reconstruction accuracies

J. Maier et al., “Deep Scatter Estimation (DSE): Accurate real-time scatter
estimation for X-ray CT using a deep convolutional neural network,” Jour. of

Nondest. Eval., vol. 37, no. 3, 2018.
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Recon Error:

Af=f-F
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Conclusions

«  Scatteringin X-ray CT produces various degradations in the reconstructions

« Adata-driven approach with using both scatter-corrupted meas. and initial reconstruction
DCNN architecture inspired by scatter-physics
physics-motivated cost function and constraints
leveraging m — opposite equality of projections

« Performs better compared to other methods

Future Work

« Implementing the method for other CT geometries

«  Extending the experiments to polychromatic beam setting & 3D reconstructions
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