

Introduction

tions

Contribu

ى

Motivation

Improving Dense Contrastive Learning with **Dense Negative Pairs**

Berk Iskender, Zhenlin Xu, Simon Kornblith, En-Hung Chu, Maryam Khademi berki2@illinois.edu, maryamkhademi@google.com

- Contrastive learning (CL) performs the pre-text task of instance discrimination
- Global CL (e.g. SimCLR [1]): \bullet
 - Trains a single global representation Ο
 - Evaluates on single-label classification Ο
- Global CL can be suboptimal for
 - Multi-label classification
 - Each label a different object
 - Different region Different semantic content
 - Dense tasks (e.g. segmentation, detection)
- DenseCL [2] uses dense features to boost performance
 - Dense-Dense positive pairs Ο
 - Dense-Global negative pairs Ο
- Inspired by DenseCL, we aim to improve the performance by modifying
 - The training scheme The objective function Ο

Figure 1: DenseCL++ training scheme. Global and dense positive/negative correspondences are used in the global (top row) and dense (bottom row) loss functions, respectively.

• Training objective: $\mathcal{L}_i = (1-\lambda)\mathcal{L}_{i,g} + \lambda\mathcal{L}_{i,d}$ $(x^{(i)}, x^{(j+)}) / =$

DenseCL:

$$\mathcal{L}_{i,d} = \sum_{k} -\log \frac{\exp(z_{k}^{(i)} \cdot z_{k+}^{(j+)})/\tau}{\exp(z_{k}^{(i)} \cdot z_{k+}^{(j+)}) + \sum_{j_{-}} \exp(z_{k}^{(i)} \cdot v_{j_{-}})/\tau} - \frac{\exp(z_{k}^{(i)} \cdot z_{k+}^{(j+)})/\tau}{\exp(z_{k}^{(i)} \cdot z_{k+}^{(j+)}) + \sum_{j_{-},m} \exp(z_{k}^{(i)} \cdot z_{m}^{(j_{-})})}$$

Dense Negative Pair Formulation Alternatives:

- Random sampling (a) (Baseline): A random dense feature from each augmented
- 2. Guided dense negative formulation (b): Select the most similar set on average to anchor

- Proposed approach DenseCL++
 - Dense-Dense negative pairs between the features of Ο augmented views
 - Modified dense contrastive loss 0
 - Different negative pair formulation alternatives Ο
 - +3.5% and +4% mAP over SimCLR and DenseCL in Ο COCO multi-label classification using ViT-S/16 [3] as encoder
 - +1.8% and +0.7% mIoU over SimCLR in COCO and VOC 0 semantic segmentation

view in the batch

 $z_k^{(i)}$

 $z_k^{(j_+)}$

onclusion

Y

3. Thresholding: For 2.

$$\overline{q} = \begin{cases} -1, & q \leq \beta \\ q, & \text{otherwise} \end{cases} \quad q = \sin(a, b)$$

View 1

View 2

features among M sets More similar sets Potentially harder negatives

- 4. N cross-view dense negatives:
 - Only cross-view positives \longrightarrow High similarities may reduce discriminability

	Agg.	Pair feature	mAP	F1
DenseCL	CLS	backbone	59.9	38.1
		proj head	59.8	38.1
	GAP	backbone	58.1	37.3
C' CI D	CT C	proj head	57.8	37.5
SIMCLR	CLS	-	59.0 59.1	31.9
	UAP	-	50.4	51.1
SimCLR	and	DenseCL	multi	-labe
classificat	ion re	esults on	cocc) foi
different	aloha	l feature a	aarea	atior
and dense	matc	hina types	ggreg	auor
and dense	e matc	hing types.	ggi cg	
and dense	e matc	hing types.		
and dense Method	e matc	hing types.	re mA	P F1
and dense Method SimCLR	e matc	hing types.	re mA 59.	P F1
and dense Method SimCLR DenseCL	e matc Agg CL CL	g. Pair featu S – S backbone	re mA 59. e 59.	P F1 6 37 9 38
And dense Method SimCLR DenseCL DenseCL+-	e matc Agg CL CL + GA	g. Pair featu S – S backbone	re mA 59. e 59. e 63.	P F1 6 37 9 38 4 39
And dense Method SimCLR DenseCL DenseCL+- DenseCL+-	e matc Ag CL CL + GA +* GA	g. Pair featu S – S backbond P backbond	re mA 59. e 59. e 63. e 64.	P F1 6 37 9 38 4 39 1 39
And dense Method SimCLR DenseCL DenseCL+- DenseCL+-	e matc Ag CL CL + GA +* GA	g. Pair featu S – S backbond P backbond	re mA 59. e 59. e 63. e 64.	P F 6 37 9 38 4 39 1 39
And dense Method SimCLR DenseCL DenseCL+- DenseCL+-	e matc Ag CL CL + GA +* GA	g. Pair featu S – S backbond P backbond P backbond	re mA 59. 59. 6 59. 6 63. 6 64.	P F 6 37 9 38 4 39 1 39
And dense Method SimCLR DenseCL DenseCL+- DenseCL+- DenseCL+- DenseCL+-	e matc Ag CL CL + GA +* GA	g. Pair featu S – S backbond P backbond P backbond settings fo	re mA 59. 59. 59. 6 63. 6 64. 50 mu	P F 6 37 9 38 4 39 1 39

Averaged mAP for 36 experiments with 3x3x4 configs of $Mx\beta xN$:

C

Aeth

baseline, DenseCL++*: M=256, $\beta=0.5$, N=64.

Method	Pair feature VOC mIoU COCO mIoU				
SimCLR		69.3	61.5		
DenseCL++	backbone	70.0	63.3		

Semantic segmentation on PASCAL VOC and MS COCO with GAP aggregation.

- Replacing dense-global negatives with dense-dense counterparts improve evaluation performance of dense contrastive learning for multi-label classification and semantic segmentation
- Various dense negative formulation techniques provide additional improvement for multi-label classification when combined
- Reconstruction as an auxiliary task for DenseCL++
 - Marginal or no improvement 0
 - Difficult to find an optimal setting Ο
 - Harmful when prioritized Ο

References

[1] Chen, T., Kornblith, S., Norouzi, M., & Hinton, G. (2020, November). A simple framework for contrastive learning of visual representations. In International conference on machine learning (pp. 1597-1607). PMLR. [2] Wang, X., Zhang, R., Shen, C., Kong, T., & Li, L. (2021). Dense contrastive learning for self-supervised visual pre-training. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 3024-3033). [3] Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., ... & Houlsby, N. (2020). An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929.

0.0 Similarity 0.2

o 10

0-0.2