A Physics-motivated DNN for X-ray CT Scatter Correction

Berk Iskender and Yoram Bresler Coordinated Science Laboratory and Department of ECE University of Illinois, Urbana-Champaign

IEEE ISBI 2020

Introduction: X-ray CT

• X-ray CT imaging is based on materials absorbing photons according to their electron density

• Used widely for imaging internal structures of the body and non-destructive evaluation [1]

Abdomen and pelvis scan

An electronic board

Problem: X-ray Scattering

• Additive contribution of scattered X-rays to measured signal causes artifacts

• Reconstruction degradations — streaks, cupping, shading artifacts and decreased contrast

Cupping artifact

Shading artifact & decrease in contrast

Problem Statement

• In a 2D monochromatic parallel beam source setting at energy E_0 , the **primary measurement** and **line integral projection** at angle $\theta \in [0, 2\pi)$ and position $t \in \mathbb{R}^d$

 $p(t,\theta) = I_0 e^{-g(t,\theta)}$ $g(t,\theta) = (Rf)(t,\theta)$

 I_0 : vacuum (air) measurement , f(x): object, $x \in \mathbb{R}^2$, R: 2D Radon transform

Assumption: Beer's Law

Photons lost by interaction as attenuation on a straight-line path Compton sc., Rayleigh sc., photoelectric effect

• Reconstruction: $p(t,\theta) = I_0 e^{-g(t,\theta)} \rightarrow g(t,\theta) = -\ln \frac{p(t,\theta)}{I_0} \rightarrow f(x) = (R^{-1}g)(x)$

 R^{-1} : FBP algorithm

٠

Detector Plane

Source at $\frac{\pi}{2} - \theta$

Problem Statement

$$p(t,\theta) = I_0 e^{-g(t,\theta)}$$
 $g(t,\theta) = (Rf)(t,\theta)$

Reality: Scattering causes a change in the direction (and energy) of the photon

$$\tau(t,\theta) = p(t,\theta) + s(t,\theta), \quad s(t,\theta) \ge 0$$

• **Reconstruction:**
$$\tilde{g}(t,\theta) = -\ln \frac{\tau(t,\theta)}{I_0} \to \tilde{f}(x) = (R^{-1} \tilde{g})(x)$$

 I_0 : vacuum (air) measurement,

•

 R^{-1} : FBP algorithm

$$\tau(t_2,\theta) \neq p(t_2,\theta) \xrightarrow{0} t_2$$

$$f(x,y)$$

$$\theta$$
he photon
$$f(x,y)$$

$$\theta$$

$$f(x,y)$$

$$f(x,y)$$

$$\theta$$

$$f(x,y)$$

$$f($$

t. /

Detector Plane

 $\tau(t_1, \theta) = p(t_1, \theta)$

Degradations

Cupping artifact

Shading artifact & decrease in contrast

Streaking artifact

Scatter Correction Methods

Hardware-based

- Anti-scatter grids, collimators, primary modulation grids, etc.
- Pros: Successful in specific settings
- Cons:
- 1. Require modification of hardware
- 2. increase in scan time
- 3. Increase in dose

Software-based

- 1. Scatter estimation from the object:
 - Monte-Carlo (MC)-based scatter estimation
 - Analytical-numerical methods
- 2. Scatter estimation in projection domain
 - Kernel-based
 - Data-driven scatter estimation

Scatter Correction Methods

Hardware-based

- Anti-scatter grids, collimators, primary modulation grids, etc.
- Pros: Successful in specific settings
- Cons:
- 1. Require modification of hardware
- 2. increase in scan time
- 3. Increase in dose

Software-based

- 1. Scatter estimation from the object:
 - Monte-Carlo (MC)-based scatter estimation
 - Analytical-numerical methods
- 2. Scatter estimation in projection domain
 - Kernel-based
 - Data-driven scatter estimation
- **3. Proposed method**: Data-driven scatter estimation from *combined* projection & object

Iterative Scheme

• Assumption: Given the object f, can compute the scatter estimate $s^* = \phi(f)$

- Different methods use different $\phi(.)$

$\phi(.)$'s: Scatter Estimators from Given Object

MC based scatter correction (Poludniowski et al 2009):

• Stochastically sample photon propagation

Trade-off: stochastic noise X run time

• High computational cost and run times for clinical purposes

Deterministic linear Boltzmann transport equation (LBTE) solver: (Acuros, Maslowski et al 2018)

- Iteratively obtains an approximate solution of LBTE
- Faster than MC methods

Trade-off: accuracy \times (discretization, # of iterations)

Slice-by-slice approach:

- First-order Compton scatter is modeled by distance-dependent blurring kernels (Bai et al 2000)
- Scatter is represented by convolutions applied to slices vertical to the photon propagation

Kernel-based & Data-driven methods

Kernel-based methods:

• Estimate $s(t, \theta)$ using convolution of weighted $\tau(t, \theta)$ or an initial primary estimate with specific kernels (Ohnesorge et. al 1999)

$$s^*(t,\theta) = \tilde{\tau}(t,\theta) * G(t,\theta)$$

- Computationally efficient
- **Cons:** Prior assumptions and pre-defined kernels *G*: *kernel*, $\tilde{\tau}(t, \theta)$: *weighted* $\tau(t, \theta)$

Data-driven methods:

- Deep scatter estimation (DSE) (Maier et. al 2018)
- Estimate s_{θ} using DCNNs: $s_{\theta}^* = N(\tau_{\theta})$
- Cons: scatter in one projection depends on entire object
 → cannot be determined from data in one view

Loss function includes p_{θ} rather than g_{θ}

Block diagram for Kernel-based methods

$$\tau_{\theta} \longrightarrow N_{\gamma}() \longrightarrow S_{\theta}^{*}$$

Block diagram for DSE

Proposed Method

- A new physics-motivated, deep learning-based method to estimate and correct scatter in projection measurements
- New features: i) Incorporates both an initial reconstruction \tilde{f}_{θ} and scatter-corrupted measurements τ_{θ}

Scatter estimate for each view angle θ depends on the entire object

ii) <u>Physics-motivated constraints</u>

iii) A specific DCNN

iv) A specific cost function for training

• Operates on normalized quantities, $\bar{\tau}_{\theta} = \tau_{\theta}/I_0$, $\bar{p}_{\theta} = p_{\theta}/I_0$, $\bar{s}_{\theta} = s_{\theta}/I_0$ \longrightarrow applicability for various I_0

Block Diagram & Loss Function

• After processing all views,

$$f^*(x) = (R^{-1}g^*)(x)$$

• Loss function, *L*, for training the network,

$$L(g_{\theta}, g_{\theta}^*) = \min_{\gamma} \|h * (g_{\theta} - g_{\theta}^*)\|_2^2 + \lambda \|g_{\theta} - g_{\theta}^*\|_1$$

- $h[n] = \frac{1}{2}\delta[n+1] \frac{1}{2}\delta[n-1], \ \lambda > 0$
- L is tailored to minimize errors in the reconstructed image, $f^*(x)$

(1) Particular h selection

(2) Post-log quantities g are used rather than p

Filter h

- Enables to express the norm of an image-domain error in the projection domain \longrightarrow No need for FBP in L ($||Qf||_2$ in terms of g_{θ} , Q: a radially symmetric filter)
- Edges are perceptually significant $\longrightarrow Q$ is HPF
- Using Parseval's identity & projection-slice theorem \longrightarrow $||Of||_2^2$

$$||Qf||_2^2 = ||h * g||_2^2$$

• Using Shepp-Logan filter in FBP and $Q(v) = |v|^{0.5}$ \longrightarrow (Short time-domain filter implementation)

$$h[n] = \frac{1}{2}\delta[n+1] - \frac{1}{2}\delta[n-1]$$

- Operates view-by-view
- Inputs:
 - A normalized post-log total measurement at view angle $\theta: -\ln \bar{\tau}_{\theta} \in \mathbb{R}^d$
 - ii. Initial reconstruction estimate, rotated by θ :
- Output:
 - i. Normalized scatter component estimate:

$$\bar{s}^*_{\theta} \in \mathbb{R}^d$$

 $\tilde{f}_{\theta} \in \mathbb{R}^{d^2}$

 $\bar{s}_{\theta}^* = N_{\gamma}(\tilde{f}_{\theta}, -\ln \bar{\tau}_{\theta})$

Data Generation, Training & Experiments

- τ_{θ} : GATE encapsulating GEANT4 MC simulation libraries.
- K = 360 views, each having $P = 2(10^6)$ photons
- p_{θ} : Using Beer's Law, $p(t, \theta) = I_0 e^{-(Rf_{E_0})(t,\theta)}$

Training & Experiments:

- Data is divided into training and validation sets phantom-wise, all measurements of a phantom in the same set, 27 randomly synthesized phantoms
- 200 keV parallel beam setting
- Water, Al & steel objects
- Improvement over the 1D adapted DSE method in numerical experiments

Computational Cost & Run times

- Total cost $< 3LKd^3$, dominated by DCNN
- K = 360 views on GPU \rightarrow only 4 ms

L: length of the filters in DCNN, d: size of measurements

Results					f^*	$f - f^*$
	•	f		Total meas. $ au_{ heta}$		- 1 - ii - 1
f using primary meas. $p_{ heta}$				DSE-1D $p_{ heta}^*$		A MAR
	Uncorr.	DSE-1D	Proposed			
PSNR	31.39	37.90	40.83		10 B	STATUS ST
SSIM	0.94	0.94	0.97			
MAE	39.71	31.06	17.85		L .	Stat Kale
Table: Average reconstruction accuracies				Proposed method $p_{ heta}^*$		

1D line profiles

Conclusions

- Scattering in X-ray CT produces various degradations in the reconstructions
- A data-driven approach with physics-motivated constraints

specific DCNN architecture

specific cost function

Future Work

- Implementing the method for other CT geometries
- Extending the experiments for polychromatic beam setting & 3D reconstructions

References

- 1. Floyd C E, Jaszczak R J, Harris C C and Coleman R E 1984 Energy and spatial distribution of multiple order Compton scatter in SPECT: a Monte Carlo investigation *Phys. Med. Biol.* **29** 1217-30
- 2. H. E. Johns and J. R. Cunningham, *The physics of Radiology*, *Third edition* (Thomas, Springfield, Illinois, 1971), p. 167.
- 3. Poludniowski, G., et al. "An efficient Monte Carlo-based algorithm for scatter correction in keV cone-beam CT." *Physics in Medicine* & *Biology* 54.12 (2009): 3847.
- 4. C. Bai, G. L. Zeng, and G. T. Gullberg, "A slice-by-slice blurring model and kernel evaluation using the Klein Nishina formula for 3D scatter compensation in parallel and converging beam spect," *Phys. Med. Biol.*, vol. 45, no. 5, 2000.
- 5. A. Maslowski et al., "Acuros CTS: A fast, linear Boltzmann transport equation solver for computed tomography scatter–Part I: Core algorithms and validation,"

Med. Phys., vol. 45, no. 5, 2018

- 6. B Ohnesorge, T Flohr, and K Klingenbeck-Regn, "Efficient object scatter correction algorithm for third and fourth generation CT scanners," *European radiology*, vol. 9, no. 3, 1999.
- 7. J. Maier et al., "Deep Scatter Estimation (DSE): Accurate real-time scatter estimation for X-ray CT using a deep convolutional neural network," *Jour. of Nondest. Eval.*, vol. 37, no. 3, 2018.