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Introduction: X-ray CT
● X-ray CT imaging is based on materials absorbing photons according 

to their electron density

● Used widely for imaging internal structures of the body and 

non-destructive evaluation [1]

Measurements from 

different angles

Cross-sectional 

(tomographic) images

Abdomen and pelvis scan An electronic board

Computer processing

2



• Additive contribution of scattered X-rays to measured signal causes artifacts 

• Reconstruction degradations → streaks, cupping, shading artifacts and decreased contrast

Streaking artifactShading artifact & decrease in contrastCupping artifact

Problem: X-ray Scattering
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Problem Statement
• In a 2D monochromatic parallel beam source setting at energy 

𝐸0, the primary measurement and line integral projection at 
angle 𝜃 ∈ [0, 2𝜋) and position 𝑡 ∈ ℝ𝑑

𝑝 𝑡, 𝜃 = 𝐼0𝑒
−𝑔 𝑡,𝜃 𝑔 𝑡, 𝜃 = 𝑅𝑓 𝑡, 𝜃

𝐼0: vacuum (air) measurement ,    𝑓 𝒙 : object, 𝑥 ∈ ℝ2,     𝑅:2D Radon transform

• Reconstruction:    𝑝 𝑡, 𝜃 = 𝐼0𝑒
−𝑔 𝑡,𝜃 → 𝑔 𝑡, 𝜃 = − ln

𝑝 𝑡,𝜃

𝐼0
→ 𝑓 𝒙 = 𝑅−1𝑔 𝒙

𝑅−1: FBP algorithm
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• Assumption: Beer’s Law

Photons lost by interaction as attenuation on a straight-line path

Compton sc., Rayleigh sc., 
photoelectric effect



Problem Statement

𝑝 𝑡, 𝜃 = 𝐼0𝑒
−𝑔 𝑡,𝜃 𝑔 𝑡, 𝜃 = 𝑅𝑓 𝑡, 𝜃

• Reconstruction:               𝑔 𝑡, 𝜃 = − ln
𝜏 𝑡,𝜃

𝐼0
→ ሚ𝑓 𝒙 = (𝑅−1 𝑔)(𝒙)

𝐼0: vacuum (air) measurement , 𝑅−1: FBP algorithm
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𝜏 ≜ {𝜏𝜃, 𝜃 ∈ Θ}: Set of total (scatter corrupted) measurements,  𝑝 ≜ {𝑝𝜃, 𝜃 ∈ Θ}: Set of primary (scatter-free) measurements

𝑠 ≜ {𝑠𝜃, 𝜃 ∈ Θ}: Scatter term (nonlinear function of 𝒇)

• Reality:  Scattering causes a change in the direction (and energy) of the photon

𝜏 𝑡, 𝜃 = 𝑝 𝑡, 𝜃 + 𝑠(𝑡, 𝜃),        𝑠 𝑡, 𝜃 ≥ 0



Streaking artifactShading artifact & decrease in contrastCupping artifact

Degradations
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Scatter Correction Methods

Hardware-based Software-based

1. Scatter estimation from the object:

- Monte-Carlo (MC)-based scatter estimation

- Analytical-numerical methods

2. Scatter estimation in projection domain

- Kernel-based 

- Data-driven scatter estimation

• Anti-scatter grids, collimators, 
primary modulation grids, etc. 

• Pros: Successful in specific settings 

• Cons: 

1. Require modification of hardware

2. increase in scan time

3. Increase in dose
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Scatter Correction Methods

Hardware-based Software-based

1. Scatter estimation from the object:

- Monte-Carlo (MC)-based scatter estimation

- Analytical-numerical methods

2. Scatter estimation in projection domain

- Kernel-based 

- Data-driven scatter estimation

3. Proposed method: Data-driven scatter estimation 
from combined projection & object

• Anti-scatter grids, collimators, 
primary modulation grids, etc. 

• Pros: Successful in specific settings 

• Cons: 

1. Require modification of hardware

2. increase in scan time

3. Increase in dose
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• Assumption: Given the object 𝑓, can compute the scatter estimate 𝑠∗ = 𝜙(𝑓)

- Different methods use different 𝜙(. )

Iterative Scheme

𝑝∗ 𝑡, 𝜃 ← 𝜏 𝑡, 𝜃 − 𝑠∗(𝑡, 𝜃)

Scatter Estimator, 𝝓FBP
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𝝓 . ′𝐬: Scatter Estimators from Given Object 

10

MC based scatter correction (Poludniowski et al 2009): 

• Stochastically sample photon propagation 

• High computational cost and run times for clinical purposes

Deterministic linear Boltzmann transport equation (LBTE) solver: (Acuros, Maslowski et al 2018)

• Iteratively obtains an approximate solution of LBTE 

• Faster than MC methods 

Slice-by-slice approach:

• First-order Compton scatter is modeled by distance-dependent blurring kernels (Bai et al 2000)

• Scatter is represented by convolutions applied to slices vertical to the photon propagation

Trade-off: stochastic noise × run time

Trade-off: accuracy × (discretization , # of iterations)
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Kernel-based & Data-driven methods

Kernel-based methods:

• Estimate 𝑠 𝑡, 𝜃 using convolution of weighted 𝜏(𝑡, 𝜃) or an initial primary 

estimate with specific kernels (Ohnesorge et. al 1999)

𝑠∗ 𝑡, 𝜃 = ǁ𝜏 𝑡, 𝜃 ∗ 𝐺 𝑡, 𝜃

• Computationally efficient 

• Cons: Prior assumptions and pre-defined kernels 

𝐺: kernel, ǁ𝜏(𝑡, 𝜃): weighted 𝜏(𝑡, 𝜃)

Data-driven methods:

• Deep scatter estimation (DSE) (Maier et. al 2018)

• Estimate 𝑠𝜃 using DCNNs:      𝑠𝜃
∗ = 𝑁(𝜏𝜃)

• Cons: scatter in one projection depends on entire object
→ cannot be determined from data in one view

Loss function includes 𝑝𝜃 rather than 𝑔𝜃

Block diagram for Kernel-based 
methods

Block diagram for DSE
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Proposed Method
• A new physics-motivated, deep learning-based method to estimate and correct scatter in projection 

measurements

• New features: i) Incorporates both an initial reconstruction ሚ𝑓𝜃 and scatter-corrupted measurements 𝜏𝜃

Scatter estimate for each view angle θ depends on the entire object

ii) Physics-motivated constraints

iii) A specific DCNN 

iv) A specific cost function for training

• Operates on normalized quantities, ҧ𝜏𝜃 = 𝜏𝜃/𝐼0, ҧ𝑝𝜃 = 𝑝𝜃/𝐼0, ҧ𝑠𝜃 = 𝑠𝜃/𝐼0 applicability for various 𝐼0
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Block Diagram & Loss Function

• After processing all views,

𝑓∗ 𝒙 = (𝑅−1𝑔∗)(𝒙)

• Loss function, 𝐿, for training the network,

𝐿 𝑔𝜃 , 𝑔𝜃
∗ = min

𝛾
ℎ ∗ 𝑔𝜃 − 𝑔𝜃

∗
2
2 + 𝜆 𝑔𝜃 − 𝑔𝜃

∗
1

• ℎ 𝑛 =
1

2
𝛿 𝑛 + 1 −

1

2
𝛿[𝑛 − 1],  𝜆 > 0

• 𝐿 is tailored to minimize errors in the reconstructed image,  𝑓∗(𝒙)

(2) Post-log quantities 𝑔 are used rather than 𝑝
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(1) Particular ℎ selection

𝑝𝜃 > 0𝑝𝜃 ≤ 𝐼0



Filter 𝒉

• Enables to express the norm of an image-domain error in the projection domain              No need for FBP in 𝑳

• Edges are perceptually significant                  𝑄 is HPF

• Using Parseval’s identity & projection-slice theorem

• Using Shepp-Logan filter in FBP and 𝑄 𝜈 = 𝜈 0.5
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(Short time-domain filter implementation)

( 𝑄𝑓
2

in terms of 𝑔𝜃, 𝑄: a radially symmetric filter )

ℎ 𝑛 =
1

2
𝛿 𝑛 + 1 −

1

2
𝛿[𝑛 − 1]

𝑄𝑓 2
2 = ℎ ∗ 𝑔 2
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DCNN, 𝑵𝜸

• Operates view-by-view

• Inputs:

i. A normalized post-log total measurement at view angle 𝜃:  − ln ҧ𝜏𝜃 ∈ ℝ𝑑

ii. Initial reconstruction estimate, rotated by 𝜃: ሚ𝑓𝜃 ∈ ℝ𝑑2

• Output:

i. Normalized scatter component estimate: ҧ𝑠𝜃
∗ ∈ ℝ𝑑

ҧ𝑠𝜃
∗ = 𝑁𝛾( ሚ𝑓𝜃 , − ln ҧ𝜏𝜃)
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ሚ𝑓𝜃

− ln ҧ𝜏𝜃 (𝑡) ҧ𝑠𝜃
∗(t)

t t
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Data Generation, Training & Experiments

• 𝝉𝜽:  GATE – encapsulating GEANT4 MC simulation libraries.

• 𝐾 = 360 views, each having 𝑃 = 2(106) photons 

• 𝒑𝜽: Using Beer’s Law, 𝑝 𝑡, 𝜃 = 𝐼0𝑒
−(𝑅𝑓𝐸0)(𝑡,𝜃)

Training & Experiments:

• Data is divided into training and validation sets phantom-wise, all measurements of a 

phantom in the same set, 27 randomly synthesized phantoms

• 200 keV parallel beam setting

• Water, Al & steel objects

• Improvement over the 1D adapted DSE method in numerical experiments

Computational Cost & Run times

• Total cost < 3𝐿𝐾𝑑3, dominated by DCNN          L: length of the filters in DCNN,  d: size of measurements

• 𝐾 = 360 views on GPU → only 4 ms
16

y

z

x



Results

Total meas. 𝜏𝜃

𝑓 using primary meas. 𝑝𝜃
DSE-1D  𝑝𝜃

∗

Proposed 
method 𝑝𝜃

∗

𝑓∗ 𝑓 − 𝑓∗ 1D line profiles

Table: Average reconstruction accuracies
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𝑓

Uncorr. DSE-1D Proposed

PSNR 31.39 37.90 40.83

SSIM 0.94 0.94 0.97

MAE 39.71 31.06 17.85



Conclusions

• Scattering in X-ray CT produces various degradations in the reconstructions

• A data-driven approach with physics-motivated constraints

specific DCNN architecture

specific cost function

• Implementing the method for other CT geometries

• Extending the experiments for polychromatic beam setting & 3D reconstructions
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Future Work
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