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1 Abstract
In this project final report, we study five different algorithms ISTA, FISTA, ADMM, PnP and LISTA for
solving linear inverse problems arising in signal processing - especially in image processing and imaging - in
LASSO setting with the theoretical aspects of the problem itself. Firstly, we provide essential information
related to the LASSO and its relation with "ideal" sparse regularization and problem settings that we work
with. Then, we analyze the algorithms both theoretically and empirically by providing their theoretical
convergence proofs, theoretical convergence rates, lower bounds for respective rates and empirical convergence
rates to verify the lower bounds for convergence. In the final part, we conduct experimental verification of
the results we find and implement these algorithms for two different problem settings: (i) sparse recovery
setting and (ii) image deblurring setting to obtain a fair comparison. In the first setting, the true signal is
sparse and we conduct experiments with different noise levels to recover the true signal from a measurement
signal which is obtained using a random Gaussian matrix. In the second setting, the true signal is sparse in a
different domain (in its Wavelet transform) and we experiment with different noise levels to recover the true
signal from a measurement signal which is obtained using a Gaussian blur kernel and a random Gaussian
matrix respectively. Finally, we compare these algorithms under these settings to reveal their strengths and
weaknesses.

Contents
1 Abstract 1

2 Introduction 2
2.1 Bayesian Interpretation of LASSO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Relation with "ideal" sparse regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.3 Unique recovery of x and measurement bound on A . . . . . . . . . . . . . . . . . . . . . . . 3
2.4 LASSO with wavelet transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Iterative Shrinkage Thresholding Algorithm (ISTA) 4
3.1 Algorithm Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.2 Theoretical Convergence Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4 A Fast Iterative Shrinkage Thresholding Algorithm (FISTA) 6
4.1 Algorithm Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4.2 Theoretical Convergence Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

5 Learned ISTA (LISTA) 7
5.1 Algorithm Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
5.2 Theoretical Convergence Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

6 Alternating Direction Method of Multipliers (ADMM) 9
6.1 Algorithm Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

6.1.1 Scaled Form of ADMM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
6.1.2 ADMM application for Generalized LASSO . . . . . . . . . . . . . . . . . . . . . . . . 10
6.1.3 Theoretical Convergence Rate Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1



7 Plug and Play (PnP) Priors for Model Based Reconstruction 11
7.1 Algorithm Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

7.1.1 MAP cost function for solving inverse problems . . . . . . . . . . . . . . . . . . . . . . 12
7.2 Theoretical Convergence Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

8 Computational Costs of Algorithms 13

9 Computational Experiments 14
9.1 Sparse recovery: Measurement Bound Experiments with LASSO . . . . . . . . . . . . . . . . 14

9.1.1 Robust CS problem - Noiseless measurement - Random Gaussian Measurement Matrix
RIP condition analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

9.2 Empirical Analysis of the Theoretical Convergence Rate/Analysis for provided algorithms for
LASSO problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
9.2.1 Selection of λ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
9.2.2 ISTA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
9.2.3 FISTA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
9.2.4 LISTA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
9.2.5 ADMM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
9.2.6 PnP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

9.3 Empirical comparison of algorithms on the different problem settings . . . . . . . . . . . . . . 19
9.3.1 Problem 1: Sparse recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
9.3.2 Problem 2: LASSO with wavelet decomposition prior . . . . . . . . . . . . . . . . . . 21

10 Discussion 22

11 Conclusion 24

2 Introduction
Least Absolute Shrinkage and Selection Operator (LASSO), is a regression analysis method that performs
variable selection and regularization simultaneously to enhance the prediction accuracy and interpretability
of the model it produces. It solves a non-smooth convex optimization problem.

Problem attempts to find a vector x ∈ Rn, given an observation (measurement) vector b ∈ Rm, a
measurement matrix A ∈ Rm×n and a constant λ > 0 that minimizes

F (x) ,
1

2
‖b−Ax‖2 + λ‖x‖1 (1)

The first term in (1) represents the data fidelity and the second term in (1) is the l1-norm of x.

2.1 Bayesian Interpretation of LASSO
The optimization problem that we are solving in LASSO can be interpreted using Bayesian approach. If
we take p(b|x) ∼ 1

(2πσ2)n exp(−
(b−Ax)T (b−Ax)

2σ2 ) and p(x) ∼ 1
2exp(−|x|), minimizing F (x) is equivalent to the

following MAP problem:

max
x

ln p(x|b) = max
x

ln p(b|x) + ln p(x) = max
x
−n

2
ln
(
2πσ2

)
− 1

2σ2
‖b−Ax‖2 − n ln 2− ‖x‖1

= min
x

1

2σ2
‖b−Ax‖2 + ‖x‖1

(2)

where λ = 2σ2 in (1).

2.2 Relation with "ideal" sparse regularization
In the project, we will solve LASSO problem with the respective different algorithms in a sparse x setting
and provide performance comparisons. Thus, we would like to give brief information related to relation
between sparse regularization and LASSO problem.
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Original problem of sparse regularization for a k-sparse signal x to be reconstructed is in the form of

min
x
||b−Ax||2 s.t. ||x||0 ≤ k (3)

Main drawback of such an optimization algorithm is that it is a NP-hard problem and best known algorithm
to solve it tries all

(
n
k

)
possible supports to find the minimizing x. Idea here is to replace ||x||0 by a convex

norm by applying convex relaxation. To perform this, we first define the convex envelope.

Definition 1. A convex envelope of f(x) is the largest convex q(x) such that q(x) ≤ f(x), ∀x ∈ Rn. The
convex envelope of a function f is found by computing the Legendre-Fenchel conjugate of f twice.

f∗(y) = sup
x

(yTx− f(x))

g(x) = sup
y

(yTx− f∗(y)) = f∗∗(x)
(4)

Theorem 2.1. The convex envelope of ||x||0, when ||x||∞ ≤ 1 is ||x||1.

Proof: Let f∗(y) = sup||x||∞≤1
yTx − ||x||0. Denote the k-th entry of y sorted in non-increasing order

as y(k), where y(k) ≥ y(k+1). Assume that ||x0|| = K. Then, we have yTx − ||x||0 = yTx −K. To obtain
sup yTx−K, we can pick x as follows

x =

{
sign(yi), if yi is among the largest K entries of y
0, otherwise

(5)

Then, yTx− ||x||0 =
∑K
k=1 |y(k)| −K =

∑K
k=1(|y(k)| − 1). Now, if we maximize over K:

f∗(y) = max{
N∑
k=1

(|y(k)| − 1) : 0 ≤ k ≤ N} =

N∑
k=1

(|y(k)| − 1)+ =

N∑
k=1

(|y(k)| − 1)+ (6)

where (.)+ is the ReLU function. Then,

f∗∗(x) = sup
y
yTx− f∗(y) (7)

where x is not restricted. If ∃ k s.t. |xk| > 1, then, for y = αek sign(xk) =⇒ yTx−f∗(y) = α|xk|−(α−1)+ →
∞ as α→∞, where ek is the unit one-hot vector with k-th element being 1. Otherwise, when ||x||∞ ≤ 1, if
we pick K such that |y(k)| > 1 for 1 ≤ k ≤ K,

yTx−
K∑
k=1

(|y(k)| − 1) ≤
N∑
k=1

|yk||xk| − ||x||1 −
K∑
k=1

(|y(k)| − 1) + ||x||1

=

N∑
k=1

|x(k)|(|y(k)| − 1)−
K∑
k=1

(|y(k)| − 1) + ||x||1

=

K∑
k=1

(|x(k)| − 1)(|y(k)| − 1) +

N∑
k=K+1

|x(k)|(|y(k)| − 1) + ||x||1 ≤ ||x||1

(8)

Equality is reached for K = 0, yi = sign(xi). Then,
∑K
k=1(|yk| − 1) = 0 =⇒ yTx = ||x||1. As a result,

convex relaxation of the optimization problem has the form of

min
x
||b−Ax||2 s.t. ||x||1 ≤ k, ||x||∞ ≤ 1 (9)

2.3 Unique recovery of x and measurement bound on A
Since in the later parts of the project we will investigate the performance of several different methods on
LASSO problem with a sparse x setting, we will briefly provide required properties for unique recovery and
bound on m to receive the Restricted Isometry Property (RIP).
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Theorem 2.2. (Unique recovery of x) Unique recovery of a k-sparse x ∈ Rn given measurement matrix A is
possible if and only if spark(A) > 2k, where spark(A) is the minimum number of linearly dependent columns
of A.

We provided the proof in the HW5, and for details please see [5]. Before going further, RIP needs to be
defined.

Definition 2. (RIP) The matrix A ∈ Rm×n satisfies the RIP property of order k if ∃δk ∈ (0, 1) such that

(1− δk)||x||22 ≤ ||Ax||22 ≤ (1 + δk)||x||22, ∀x ∈ Σk (10)

where Σk is the subset of k-sparse signals in Rn.

Theorem 2.3. (Measurement bound [5]) If A ∈ Rm×n satisfies the RIP of order 2k with RIP constant
δ2k ∈ (0, 1/2]. Then,

m ≥ ck ln
n

k
(11)

where the constant c ≈ 0.88.

2.4 LASSO with wavelet transform
In the computational experiments section, we will implement LASSO with wavelet decomposition prior
for images and solve the problem with different algorithms. Thus, we very briefly discuss about wavelet
transform and why it is useful in LASSO problem for image reconstruction.

The wavelet transform uses functions that are localized in both the real and Fourier space. Generally,
the wavelet transform can be expressed by the following equation for a function f(x):

F (a, b) =

∫ ∞
−∞

f(x)ψ∗(a,b)(x)dx (12)

where the ∗ is complex conjugate symbol and ψ is the basis functions obeying certain rules including dyadic
translations and dilations. Discrete wavelet transform (DWT) is any wavelet transform for which the wavelets
are discretely sampled. Most natural images have sparse representations with respect to basis obtained form
wavelet transform.

Figure 1: (a) original image containing 106 pixels (b) wavelet coefficients in random order (sparse) (c)
Reconstructed image using only 25(103) wavelet coefficients with 97.5% reduction.

In figure 1, this property is illustrated very effectively. Thus, LASSO problem in (1) is modified as follows

F (x) ,
1

2
||b−Ax||2 + λ||Wx||1 (13)

where W is the DWT matrix.

3 Iterative Shrinkage Thresholding Algorithm (ISTA)

3.1 Algorithm Analysis
Iterative Shrinkage Thresholding Algorithm (ISTA) can be traced back to the proximal forward-backward
iterative scheme introduced in [2] and [12] within the general framework of splitting methods [6]. The
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algorithm solves the problem in the following form:

min{F (x) = f(x) + g(x) : x ∈ Rn} (14)

The following assumptions are required:

• g: Rn → R is a continuous convex function which is non-smooth

• f: Rn → R is a smooth continuously differentiable convex function with Lipschitz continuous gradient
L(f): ‖∇f(x)−∇f(y)‖ ≥ L(f)‖x− y‖ for every x, y ∈ Rn

Next, for any L> 0, consider the following quadratic approximation of F (x) at a given point y:

QL(x, y) = f(y) + 〈x− y,∇f(y)〉+
L

2
‖x− y‖2 + g(x) (15)

that has a unique minimizer

pL(y) = arg min
x∈Rn

{f(y) + 〈x− y,∇f(y)〉+
L

2
‖x− y‖2 + g(x)} (16)

that is by ignoring the constants equal to:

pL(y) = arg min
x∈Rn

{g(x) +
L

2
‖x− (y − 1

L
∇f(y))‖2} (17)

Then the basic step of ISTA is as follows:

xk = pL(xk−1)

where 1/L is the step size. In our case f(x) = 1
2‖Ax− b‖

2
2, g(x) = λ‖x‖1. Then ISTA is as follows:

xk = τ λ
L

(xk−1 −
1

L
∇f(xk−1)) = τ λ

L
(xk−1 −

1

L
AT (Axk−1 − b)) (18)

where τ λ
L
is the soft thresholding operator with threshold at λ

L .

3.2 Theoretical Convergence Analysis
Theoretical convergence analysis for ISTA can be found in [1]. Generally, for large-scale problems first
order methods are the practical option, but it has been observed that they converge slowly, namely they
have sublinear global rate of convergence. In this section, we will focus on non-asymptotic global rate of
convergence for ISTA and show that F (xk)− F (x∗) ≈ O(1/k).

Lemma 3.1. Let f: Rn → R be a continuously differentiable function with Lipschitz continuous gradient
and Lipschitz constant L(f). Then, for any L ≥ L(f),

f(x) ≤ f(y) + 〈x− y,∇f(y)〉+
L

2
‖x− y‖2 ∀x, y ∈ Rn (19)

Lemma 3.2. For any y ∈ Rn, one has z = pL(y) if and only if there exists γ(y) ∈ ∂g(z), the subdifferential
of g(.), such that

∇f(y) + L(z − y) + γ(y) = 0 (20)

Lemma 3.3. Let y ∈ Rn and L > 0 be such that

F (pL(y)) ≤ Q(pL(y), y) (21)

Then for any x ∈ Rn.

F (x)− F (pL(y)) ≥ L

2
‖pL(y)− y‖2 + L〈y − x, pL(y)− y〉 (22)
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For the proof of Lemma 3.3, please see [1]. (21) directly follows from Lemma 3.1 which is a well-known
fundamental property for a smooth function with Lipschitz continuous gradient L(f). Additionally, the proof
for Lemma 3.2, is an immediate result from optimality conditions for the strong convex problem. Overall,
Lemma 3.1 and Lemma 3.2 are used to obtain Lemma 3.3.

Theorem 3.4. Let {xk} be the sequence generated by (18). Then for any k ≥ 1;

F (xk)− F (x∗) ≤ L(f)‖x0 − x∗‖2

2k
(23)

where x∗ is any true signal.

Proof: It is basically by invoking Lemma 3.3 with x = x∗ and y = xn. Then, we get the following:

2

L
(F (x∗)− F (xn+1)) ≥ ‖x∗ − xn+1‖2 − ‖x∗ − xn‖2 (24)

After summing the inequality over n = 0, ..., k − 1 and modifying it,we get the desired theorem. For the
details please see [1].

In LASSO problem, L(f) = 2λmax(ATA).Then Theorem 3.4 is as follows:

F (xk)− F (x∗) ≤ λmax(ATA)‖x0 − x∗‖2

k
(25)

The interpretation for Theorem 3.4 is that error decreases with a rate of 1/k where k is the number of
iterations. In other words, F (xk)− F (x∗) ≈ O(1/k).

4 A Fast Iterative Shrinkage Thresholding Algorithm (FISTA)

4.1 Algorithm Analysis
The important question is if we can develop a faster method than ISTA described in the previous section
while keeping the computational cost the same, i.e. the new method will have the same simplicity of ISTA
while its global rate of convergence will be significantly better. This question is answered affirmatively in
[1]. Their algorithm for solving (1) is in the following iterative form:

xk+1 = τ λ
L

(pL(yk)) (26)

where yk will be chosen smartly by adding "momentum" and pL is as defined in (16). The algorithm is as
follows:

xk = τ λ
L

(yk −
1

L
AT (Ayk − b))

tk+1 =
1 +

√
1 + 4t2k
2

yk+1 = xk +

(
tk − 1

tk+1

)
(xk − xk−1)

4.2 Theoretical Convergence Analysis
The main difference between ISTA and FISTA is that iterative shrinkage operator is not applied to directly
previous xk−1 but at a point chosen by using previous two points xk−1, xk−2. Therefore, FISTA is a first-order
method which has a sublinear global rate of convergence. In this section, we will focus on non-asymptotic
global rate of convergence for FISTA and show that F (xk)− F (x∗) ≈ O(1/k2).

Lemma 4.1. The sequences {xk, yk} generated using FISTA satisfy for every k ≥ 1;

2

L
t2kvk −

2

L
t2k+1vk+1 ≥ ‖uk+1‖2 − ‖uk‖2 (27)

where vk = F (xk)− F (x∗), uk = tkxk − (tk − 1)xk−1 − x∗
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Proof: By invoking Lemma 3.3 with x = xk, y = yk+1 and x = x∗, y = yk+1 and applying the usual
Pythagoras relation:

‖b− a‖2 + 2〈b− a, a− c〉 = ‖b− c‖2 − ‖a− c‖2

After some modifications, the desired lemma can be obtained. Please see [1] for the details.

Lemma 4.2. Let {ak, bk} be positive sequences of reals satisfying;

ak − ak+1 ≥ bk+1 − bk ∀k ≥ 1, a1 + b1 ≤ c, c > 0 (28)

Then, ak ≤ c for every k ≥ 1.

Lemma 4.3. The positive sequence {tk} generated in FISTA with t1 = 1 satisfies tk ≥ (k + 1)/2 for all
k ≥ 1.

Lemma 4.2 and Lemma 4.3 are trivial facts.

Theorem 4.4. Let {xk}, {yk} be generated by FISTA. Then for any k ≥ 1;

F (xk)− F (x∗) ≤ 2L(f)‖x0 − x∗‖2

(k + 1)2
(29)

where x∗ is any true signal.

The proof of Theorem 4.4 is a combination of Lemma 4.1, Lemma 4.2, Lemma 4.3 and Lemma 3.3. For
the details, you can see [1].

In LASSO problem, L(f) = 2λmax(ATA). Then, Theorem 4.4 is as follows:

F (xk)− F (x∗) ≤ 4λmax(ATA)‖x0 − x∗‖2

(k + 1)2
(30)

The interpretation for Theorem 3.4 is that error decreases with a rate of 1/k2 where k is the number of
iterations. In other words, F (xk)− F (x∗) ≈ O(1/k2).

5 Learned ISTA (LISTA)

5.1 Algorithm Analysis
Inspired by Iterative Shrinkage Thresholding Algorithm, in [7], they proposed a learning based algorithm
named as Learned ISTA (LISTA). The main idea is to train a neural network with a specific architecture that
is based on ISTA, to produce the best possible solution to LASSO problem. They unfold ISTA algorithm as
a recurrent neural network (RNN) and truncates it into K iterations. In Figure 2 (a), recurrent structure of
ISTA can be seen whereW1 = 1

LA
T , W2 = I− 1

LA
TA and ηθ is the soft thresholding function with threshold

at θ. In Figure 2 (b) unfolded structure of LISTA can be seen where all the parameters {(W k
1 ,W

k
2 , θ

k)}K−1k=0

are learned by stochastic gradient descent (SGD) over a given a given training dataset {(x∗i , bi)}Pi=1. Unfolded
structure of LISTA can be summarized as follows:

xk+1 = ηθk(W k
1 b+W k

2 x
k), k = 0, ...,K − 1 (31)

The training loss function is as follows:

min
{(Wk

1 ,W
k
2 ,θ

k)}K−1
k=0

1

P

P−1∑
p=0

1

2
‖xK

(
W k

1 ,W
k
2 , θ

k, bi
)
− x∗i ‖22 (32)

7



Figure 2: (a) ISTA, (b) LISTA

5.2 Theoretical Convergence Analysis
The first attempt to establish a theoretical convergence rate of LISTA is done in [4]. The details of the
convergence analysis in this section can be found in [4].

Let’s define the following noisy linear measurements:

b = Ax∗ + w (33)

Assumption 1. Signal x∗ and observation noise w are sampled from the following set:

(x∗, w) ∈ X(B, s, σ) = {(x∗, w) : |x∗i | ≤ B, ∀i, ‖x∗‖0 ≤ s, ‖w‖1 ≤ σ} (34)

Assumption 1 is composed of basic assumptions that implies x∗ is bounded and s-sparse(s ≥ 2) and w is
bounded.

Lemma 5.1 (Necessary Condition). Given {(W k
1 ,W

k
2 , θ

k)}∞k=0 and x
0, let b be observed by (33) and {xk}∞k=1.

If the following holds uniformly for any (x∗, w) ∈ X(B, s, 0)(no noise):

xk({(W k
1 ,W

k
2 , θ

k)}∞k=0, b, x
0)→ x∗, as k →∞

and {W k
2 }∞k=1 are bounded

‖W k
2 ‖2 ≤ BW ,∀k = 0, 1, 2, ...

then {W k
1 ,W

k
2 , θ

k}∞k=0 must satisfy

W k
2 − (I −W k

1 A)→ 0, as k →∞ (35)

θk → 0, as k →∞ (36)

The result of equation (35), in LISTA {W k
1 ,W

k
2 } asymptotically satisfies W k

2 = I −W k
1 A. In [4], they

adopt that and simplify the LISTA to:

xk+1 = ηθk(xk + (W k)T (b−Axk)), k = 0, ...,K − 1 (37)

where {W k, θk}K−1k=0 are trainable parameter This method is named as LISTA-CP where CP stands for partial
weight coupling.

Theorem 5.2 (Convergence of LISTA-CP). Given {W k, θk}∞k=0 and x0 = 0, let {xk}∞k=1 be generated by
(37). If Assumption 1 holds and s is sufficiently small, then there exists a sequence of parameters {W τ , θτ}k−1τ=0

such that, for all (x∗, w) ∈ X(B, s, σ), we have the error bound:

‖xk({W τ , θτ}k−1τ=0, b, x
0)− x∗‖2 ≤ sB exp(−ck) + Cσ,∀k = 1, 2, ... (38)

where c > 0, C > 0 are constants depend only on A and s.

Investigating noiseless case by choosing (σ = 0), the convergence rate becomes as follows:

‖xk − x∗‖2 ≤ sB exp(−ck) (39)
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where s < (1 + 1/µ)/2 and c = −log(2µs− µ). µ is defined as "Generalized Mutual Coherence" :

µ(A) = inf
W∈Rm×n,(Wi)TAi=1,1≤i≤n

{ max
i 6=j,1≤i,j≤n

|WT
i Aj |} (40)

where Ai and Wi are unit norm vectors. One observation from Theorem 5.2 combined with Lemma 5.1,
is that partial weight coupling is both necessary and sufficient to guarantee convergence.

6 Alternating Direction Method of Multipliers (ADMM)

6.1 Algorithm Analysis
Alternating Direction Method of Multipliers is a decomposition-coordination procedure, where solutions to
small subproblems are coordinated to solve the global problem. It utilizes the dual decomposition and aug-
mented Lagrangian method for constrained optimization. Algorithm uses, dual ascent, dual decomposition,
augmented Lagrangian and the Method of Multipliers.

Algorithm solves the problem of the form

min f(x) + g(z) s.t. Kx+Nz = c (41)

where x ∈ Rn, z ∈ Rm, A ∈ Rp×n, B ∈ Rp×m and c ∈ Rp. f and g are convex. The initial variable x is
divided into two parts, called x and z in this context, where the objective function is separated across this
splitting. The optimal value of the problem 41 is obtained by

p∗ = inf{f(x) + g(z)|Kx+Nz = c} (42)

In order to increase the robustness of the dual ascent method and obtain convergence without strict
convexity or finiteness assumptions on f , the augmented Lagrangian is formed:

Lρ(x, z, y) = f(x) + g(z) + yT (Kx+Nz − c) + (ρ/2)||Kx+Nz − c||22 (43)

where ρ > 0 is the penalty parameter. This problem is equivalent to the original problem (41), any feasible
x making this term 0. Benefit of including this term is that it makes the associated dual function gρ(y) =
infx,z Lρ(x, z, y) differentiable under less strict conditions on the original problem.

Ultimately, ADMM iterations can be stated as

xk+1 = argmin
x
Lρ(x, z

k, yk) (x-minimization step)

zk+1 = argmin
x
Lρ(x

k+1, z, yk) (z-minimization step)

yk+1 = yk + ρ(Kxk+1 +Nzk+1 − c) (dual variable update)

(44)

where ρ > 0. Dual variable update stepsize is equal to the augmented Lagrangian parameter ρ.
The method of multipliers for (41) has the form

(xk+1, zk+1) = argmin
x,z

Lρ(x, z, y
k)

yk+1 = yk + ρ(Kxk+1Nzk+1 − c)
(45)

Difference in ADMM is that, x and z are updated in an alternating scheme rather than simultaneously.
Separating the minimization over x and z into two steps allows for decomposition when f and g are separable.

6.1.1 Scaled Form of ADMM

If we combine linear and quadratic terms in the augmented Lagrangian and scale the dual variable, we obtain

yT + (ρ/2)||r||22 = (ρ/2)||r + (1/ρ)y||22 − (1/2ρ)||y||22
= (ρ/2)||r + u||22 − (ρ/2)||u||22

(46)

9



where r = Kx + Nz − c is the residual and u = (1/ρ)y is the dual variable. Then, ADMM iterations
have the form of

xk+1 = argmin
x

(f(x) + (ρ/2)||Kx+Nzk + uk − c||22)

zk+1 = argmin
x

(g(z) + (ρ/2)||Kxk+1 +Nz + uk − c||22)

uk+1 = uk +Kxk+1 +Nzk+1 − c

(47)

If we define the residual at iteration k as rk = Kxk + Nzk − c, uk is equal to the running sum of the
residuals

uk = u0 +

k∑
j=1

rj (48)

6.1.2 ADMM application for Generalized LASSO

The function to be optimized for Generalized LASSO problem has the form of

min
x

1

2
||Ax− b||22 + λ||Fx||1 (49)

where λ > 0 is usually chosen by cross-validation and F is an arbitrary linear transformation. In ADMM
form, the LASSO problem can be stated as follows

min
x,z

f(x) + g(z) s.t. x− z = 0 (50)

where f(x) = 1
2 ||b−Ax||

2
2 and g(z) = λ||Fz||1. Consequently, iterations for ADMM have the form of

xk+1 = (ATA+ ρFTF )−1(AT b+ ρFT (zk − uk))

zk+1 = Sλ/ρ(Fx
k+1 + uk)

uk+1 = uk + Fxk+1 − zk+1

(51)

where (ATA + ρI) is always invertible due to ρ > 0 if F is a unitary transform where FTF = I and the
x-update is a ridge regression.

In the empirical comparison of algorithms part, two different problem settings will be considered for F .

6.1.3 Theoretical Convergence Rate Analysis

In this section, a general lower bound on the convergence rate is obtained for general form of over-relaxed
ADMM, which is a larger set of algorithms that includes the ADMM itself. However, this analysis requires
the f(x) to be strongly convex. Thus, computational analysis of this part is performed with a specific setting.

Let Sd(m,L) denote the set of differentiable convex functions f : Rd → R̄ that are strongly convex
with parameter m and Lipschitz continuous with parameter L. Also, let Sd(0,∞) denote the set of convex
functions Rd → R̄.

Assumption 2. f and g are closed, proper and convex, which is coherent with the LASSO problem. Assume
that for some 0 < m ≤ L < ∞ we have f ∈ Sp(m,L), g ∈ Sq(0,∞), A is invertible and B has full column
rank. These assumptions hold for LASSO problem since K = N = Ip and f is strongly convex.

Derivations [10] are done for over-relaxed version of ADMM where each instance of Kxk+1 in the z and
u updates is replaced by

αKxk+1 − (1− α)(Nzk − c)

If we select α = 1, we obtain ADMM itself.

Theorem 6.1. [8] Suppose that assumption above holds. Let the sequences xk, zk and uk be generated
by running over relaxed ADMM algorithm with step size ρ = (m̂L̂)

1
2 ρ0 and over relaxation parameter α,

where m̂ = m
σ2
1(K)

, L̂ = L
σ2
p(K) , and κ = κfκ

2
K = L̂/m̂ where, κf = L

m , κK = σ1(K)
σp(K) , σ1 and σp are the
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largest and smallest singular values of K. Suppose (x∗, z∗, u∗) is a fixed point of algorithm 2, and define

ϕk =

[
zk
uk

]
, ϕ∗ =

[
z∗
u∗

]
. Fix 0 < τ < 1, and suppose that a 2x2 matrix P � 0 and λ1, λ2 ≥ 0 such

that the 4x4 linear matrix inequality

0 �
[
Â>PÂ− τ2P Â>PB̂

B̂>PÂ B̂>PB̂

]
+

[
Ĉ1 D̂1

Ĉ2 D̂2

]> [
λ1M1 0

0 λ2M2

] [
Ĉ1 D̂1

Ĉ2 D̂2

] (52)

is satisfied, where Â =

[
1 α− 1
0 0

]
, B̂ =

[
α −1
0 −1

]
, Ĉ1 =

[
−1 −1
0 0

]
, D̂1 =

[
−1 0
1 0

]
, Ĉ2 =[

1 α− 1
0 0

]
, D̂2 =

[
α −1
0 1

]
and M1 =

 −2ρ−20 ρ−10

(
κ−

1
2 + κ

1
2

)
ρ−10

(
κ−

1
2 + κ

1
2

)
−2

, M2 =

[
0 1
1 0

]
Then, for all k ≥ 0, we have

‖ϕk − ϕ∗‖ ≤ κN
√
κP ‖ϕ0 − ϕ∗‖ τk

Detailed proof of the theorem can be found in the appendix of[10]. For fixed values of α, ρ0, m̂, L̂ and
τ , (52) is a semidefinite program with variables P , λ1 and λ2. Minimal rate of τ is found via binary
search such that the linear matrix inequality in (52) is satisfied. Note that when ρ0 = κε, the matrix

M1 =

[
−2κ−2ε κ−

1
2−ε + κ

1
2−ε

κ−
1
2−ε + κ

1
2−ε −2

]
and (52) only depends on κ.

One caveat about Theorem 6.1 is that convergence rate is not given as a function of κ. To use it, κ is
specified beforehand and search is done for the minimal τ s.t. (52) is feasible. This problem is solved by
obtaining the rate as a symbolic function of the step size ρ and the over-relaxation parameter α.

Theorem 6.2. Suppose again the assumption holds. Let the sequences xk, zk and uk be generated by running
over-relaxed ADMM algorithm with parameter α ∈ (0, 2), with step size ρ = (m̂L̂)1/2κε, where ε ∈ (−∞,∞).
Define x∗, z∗, u∗, ϕk and ϕ∗ as in Theorem 3.1. Then, for all sufficiently large κ, we have

‖ϕk − ϕ∗‖ ≤ C ‖ϕ0 − ϕ∗‖
(

1− α

2κ0.5+|ε|

)k
(53)

where C = κB

√
max

{
α

2−α ,
2−α
α

}
.

Detailed proof is included in the appendix.
For the LASSO problem solved by ADMM, which is the case that we are interested in, convergence rate

result in Theorem 6.2 has the form of

‖ϕk − ϕ∗‖ ≤ ‖ϕ0 − ϕ∗‖
(

1− 1

2κ0.5

)k
(54)

where α = 1, K = N = Ip, C = 1, κK = κN = 1, κf = Lf/mf and ε = 0 is selected. mf and Lf can be
found as the smallest and largest eigenvalues of ATA, respectively.

7 Plug and Play (PnP) Priors for Model Based Reconstruction

7.1 Algorithm Analysis
Plug and Play Priors for Model Based Reconstruction [13] (PnP) provides a flexible network for using
denoising algorithms as priors for model-based inversion. It simplifies the software implementation and
integration. Also, it allows denoising methods that are not explicitly formulated as optimization problems to
be utilized inside a direct application of ADMM, which solves various MAP regularized inverse problems. In
PnP, prior and forward model terms of MAP estimation problem is decoupled by splitting the state variable,
resulting in two decoupled optimization problems, one for the forward model and one for the prior model.
Decoupled software implementation becomes possible after splitting.
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7.1.1 MAP cost function for solving inverse problems

Let y be our M × 1 measurement vector, p(b|x) be the conditional probability density function (pdf) of the
measurements b given x and p(x) be the pdf of the unknown. MAP estimate of x has the form of

x̂← argmin
x
{− log p(b|x)− log p(x)}

x̂← argmin
x
{l(b;x) + s(x)}

(55)

where l(b;x) = − log p(b|x) and − log p(x) = s(x)+ terms independent of x. When l(b;x) = 1
2σ2
n
‖b − x‖22 +

M
2 log

(
2πσ2

n

)
, MAP estimate tailored to remove the white Gaussian noise with variance σ2

n. The operator
that denoises b with n ∼ N(0, σ2

n) is given by:

H
(
b;σ2

n

)
= argmin

x

{
1

2σ2
n

‖b− x‖22 + s(x)

}
(56)

To control relative effect of the prior model on the reconstruction, problem can be rewritten as

x̂ = argmin
x
{l(b;x) + λs(x)} (57)

where λ = 1 gives exact MAP estimation problem. To implement splitting on this problem, we can refor-
mulate it as

x̂ = argmin
x
{l(b;x) + λs(z)} s.t. x = z (58)

Then, as shown in the previous sections, we can form augmented Lagrangian, Lρ:

Lρ(x, z, u) = l(b;x) + λs(z) +
ρ

2
‖x− z + u‖22 −

ρ

2
‖u‖22 (59)

and use ADMM steps at k-th iteration step for the solution as

xk = argmin
x

Lρ(x, zk−1, uk−1)

zk = argmin
z

Lρ(xk, z, uk−1)

uk = uk−1 + (xk − zk)

(60)

If x̃ = zk − uk−1 and z̃ = xk + uk−1, ADMM steps have the form of

xk = F(b, x̃; ρ) = argmin
x

{
l(b;x) +

ρ

2
‖x− x̃‖22

}
zk = H(z̃;

λ

ρ
) = argmin

z

{ρ
2
‖z̃ − z‖22 + λs(z)

}
uk = uk−1 + (xk − zk)

(61)

The first step of the algorithm only depends on the forward model and returns the MAP estimate of x given
b. The second step only depends on the choice of prior and can be interpreted as a denoising operation as
in [56]. This framework, allows the use of two independent modules, one for F and one for H respectively.
Changing the prior model only modifies H. Hence, PnP framework allows the utilization of different prior
models, H, with the forward model F of interest. The minimization corresponding to F and H does not need
to be exact. They can be replaced by approximate operators that do not minimize the cost functions but
decrease it sufficiently. By this way, speed of ADMM can be enhanced for practical purposes.

7.2 Theoretical Convergence Analysis
Since convergence rate and global convergence is specific to the denoiser type, only the fixed-point convergence
result for PnP algorithms is included. To ensure global convergence for PnP ADMM, a sufficient condition
is having denoising algorithm Hγ γ = λ/ρk, where ρk is the augmented Lagrangian coefficient at k-th step,
has symmetric gradient and is non-expansive. In this case, g exists due to a proximal mapping theorem [9].
However, proving non-expansive denoisers can be difficult. Thus, we are interested in fixed-point convergence.
Fixed point convergence guarantees that a nonlinear algorithm can enter into a steady state asymptotically
and for any initial point lying in a region called the basin of attraction it will converge. To show fixed-point
convergence [3], bounded denoisers are defined first.
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Definition 3. (Bounded Denoiser) A bounded denoiser with a parameter γ is a function Hγ : Rn → Rn
such that ∀x ∈ Rn,

‖Hγ(x)− x‖2 /n ≤ γ2C (62)

for some constant C independent of n and γ. We have Hγ → I as γ → 0.

Assumption 3. f : [0, 1]n → R has bounded gradients. ∀x ∈ [0, 1]n, ∃L <∞ such that ||∇f(x)||2/
√
n ≤ L.

Also, for f(x) = ||Ax− b||22, A ∈ Rn×n with eigenvalues in [0, 1], we have ∇f(x) = 2AT (Ax− b) and

‖∇f(x)‖2/
√
n ≤ 2λmax(A) (‖x‖2 + ‖b‖2) /

√
n

Then, main convergence result is as follows.

Theorem 7.1. Under Assumption 3, for any Hγ , the iterates of PnP ADMM demonstrates a fixed-point
convergence. Namely, ∃ (x∗, z∗, u∗) such that ||xk − x∗||2 → 0, ||zk − z∗||2 → 0 and ||uk − u∗||2 → 0 as
k →∞.

Proof of the theorem is included in [3]. Theorem 7.1 ensures that xk → zk since uk+1 = uk+(xk+1−zk+1)
converges. A reasonable stopping criterion can be selected as

∆k+1=
1√
n

(∥∥∥x(k+1) − x(k)
∥∥∥
2

+
∥∥∥v(k+1) − v(k)

∥∥∥
2

+
∥∥∥u(k+1) − u(k)

∥∥∥
2

)
≤ tol

(63)

for some tolerance level tol.

8 Computational Costs of Algorithms
In this section, we will compare computational costs of ISTA, FISTA, LISTA, ADMM and Plug and Play.
We will first calculate cost per iteration and then we will investigate the cost of obtaining ε approximate
solution. First of all, let’s define a generic matrix A ∈ Rm×n as in Equation (1).

The computation cost of ISTA per iteration comes from mainly matrix vector multiplication that is in
ATAxk−1 form where ATA ∈ Rn×n and xk−1 ∈ Rn. Then, computational complexity of ISTA per iteration
is O(n2).

Similarly, the computation cost of FISTA per iterations comes from mainly matrix vector multiplication
that is in ATAyk form where ATA ∈ Rn×n and yk ∈ Rn. Then, computational complexity of FISTA per
iteration is O(n2).

The computation cost of LISTA per iteration is exactly same as the computation cost of ISTA. The main
cost comes from matrix vector multiplication of W k

2 x
k that is O(n2).

The computation cost of ADMM per iteration comes mainly from matrix inversion((ATA + ρI)−1) and
matrix vector multiplication((ATA + ρI)−1(zk − uk)). The cost of matrix inversion is O(n3) when we use
Gauss-Jordan elimination and the cost of matrix vector product is O(n2).

For Plug and Play Algorithm, it depends on the denoiser algorithm. The first step still is dominated by
matrix inversion which is O(n3). If the computational cost of denoiser algorithm is heavier that O(n3), then
computational cost of PnP is dominated by denoiser step. Otherwise, PnP is dominated by O(n3).

A comparative analysis of computational costs for different algorithms can be found in the following
Table 1.

ISTA FISTA LISTA ADMM
Cost per Iteration O(n2) O(n2) O(n2) O(n3)

Number of Iterations to achieve ε O( 1
ε ) O( 1√

ε
) O(ln( 1

ε )) O(logβ( εc ))

Total Cost O(n
2

ε ) O( n
2
√
ε
) O(n2ln( 1

ε )) O(n3logβ( εc ))

Table 1: Comparative Analysis of Computational Costs of Different Algorithms for LASSO problem

where c and β can be defined by using (54).
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9 Computational Experiments

9.1 Sparse recovery: Measurement Bound Experiments with LASSO
In order to demonstrate the relation between the sparse recovery of x and the number measurements taken
from it, we conducted several experiments with different configurations since we are going to compare the
performances of the algorithms on sparse recovery problem.

9.1.1 Robust CS problem - Noiseless measurement - Random Gaussian Measurement Matrix
RIP condition analysis

In this experiment, we attempted to demonstrate the validity of the theoretical measurement bound result
in (11) for which the measurement matrix A in (1) satisfies RIP of order 2k with RIP constant δ2k ∈ (0, 12 ].
For this purpose, we generated a measurement matrix A where every element Aij ∼ N(0, 1/m), since such
matrices are shown to satisfy RIP with exponentially high probability with number of measurements, m, as
in [11]. For the experiments, sparsity level of x ∈ Rn was selected exactly as k = 6 and n = 200. Using this,
we obtained the lower bound on measurements to satisfy RIP as m ≥ 18.67 using (11). Then, we initialized
the measurement matrix with m = 10 and added one more column at each step, swept over the λ in (1) and
total number of iterations using ADMM to solve (1) to find the minimum ||x− x̃||2 at each step, where x̃ is
the reconstruction. Then, we obtained the plot which indicates the minimum l2 reconstruction error versus
the number of measurements using ADMM algorithm.

10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5
Number of measurement columns of A, m

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

m
in

||x
x t

ru
e||

2

min||x xtrue||2 vs. m

Figure 3: l2 reconstruction error vs. number of measurement columns, m, where m ∈ {10, .., 35}

Result of this analytical study was coherent with the theoretical results. After m = 19, fast drop in the
reconstruction error can be seen from the plot itself.

9.2 Empirical Analysis of the Theoretical Convergence Rate/Analysis for pro-
vided algorithms for LASSO problem

9.2.1 Selection of λ

λ is very critical for solution of Problem (1). It determines the trade-off between data fidelity term which is
the least squares term, and prior knowledge which is the sparsity or l1 term. High level intuition is that if
we have simpler problem then we need to pick smaller λ. E.g. When the noise power is small we can rely on
the data fidelity term more and make λ smaller or when the forward problem has smaller condition number
then we can choose λ smaller again.

In our experiments, we selected λ empirically. Firstly, we generated a validation set that consists of 100
true signals. Based on our validation set, we obtain 100 measurements. Similarly we defined a possible set
of λs. Then the problem (1) was solved for each elements in the set of λs. Subsequently, we obtained four
different graphs:(i) ‖xtrue − xrecovered‖2 vs λ, (ii) ‖xtrue − xrecovered‖1 vs λ, (iii) ‖xrecovered‖1 vs λ , (iv)
‖Axrecovered − y‖2 vs λ. Then, λ selection can be done by inspecting those 4 graphs.

In the following figures, we have investigated two different scenarios to clarify λ selection. In both cases,
the condition number of the forward operator was 20 and sparsity level was chosen as 10. In figure 4, noise
variance is 0.01, in figure 5, noise variance is 0.1. In the first case, the optimal λ is around 0.5. On the other
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hand, in the second case, the optimal λ is around 2. As the noise level increases, it is legitimate to choose λ
larger.

(a) (b) (c) (d)

Figure 4: (a)‖xt − xr‖2 vs λ, (b)‖xtrue − xr‖1 vs λ, (c)‖xr‖1 vs λ, (d)‖Axr − y‖2 vs λ

(a) (b) (c) (d)

Figure 5: (a)‖xt − xr‖2 vs λ, (b)‖xtrue − xr‖1 vs λ, (c)‖xr‖1 vs λ, (d)‖Axr − y‖2 vs λ

9.2.2 ISTA

In section 3.2, we provided the theoretical convergence rate analysis for ISTA as a general lower bound.
The analysis was regarding non-asymptotic global rate of convergence for ISTA and it was shown that
F (xk)− F (x∗) ≈ O(1/k) that can be found in (25).

In the experiments, we worked with a square measurement matrix A ∈ Rn×n. Matrix A is obtained by
randomly sampling a Gaussian distribution where Aij ∼ N(0, 1), i, j ∈ {1, ..., n}. x ∈ Rn, where n = 200,
was selected as 5-sparse where nonzero elements were 1. In the experiments, the condition number of matrix
A is 130. Then, results for F (xk)− F (x∗) are obtained and compared with the theoretical bounded that is
provided in (25). Respective lower bound on the rate was verified for measurements with and without noise
for two cases that can be seen in Figure (6) and (7).

(a) (b) (c)

Figure 6: Convergence rate analysis for ISTA algorithm with measurements y without noise (λ = 1). (a) Re-
construction error, (b) Linear scale convergence rate and lower bound on the rate , (c) Log scale convergence
rate and lower bound on the rate.
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(a) (b) (c)

Figure 7: Convergence rate analysis for ISTA algorithm with measurements y with Gaussian noise N(0, 0.2)
(λ = 1). (a) Reconstruction error, (b) Linear scale convergence rate and lower bound on the rate, (c) Log
scale convergence rate and lower bound on the rate.

9.2.3 FISTA

In section 4.2, we provided the theoretical convergence rate analysis for FISTA as a general lower bound.
The analysis was regarding non-asymptotic global rate of convergence for ISTA and it was shown that
F (xk)− F (x∗) ≈ O(1/k2) that can be found in (30).

In the experiments, we worked with a square measurement matrix A ∈ Rn×n. Matrix A is obtained by
randomly sampling a Gaussian distribution where Aij ∼ N(0, 1), i, j ∈ {1, ..., n}. x ∈ Rn, where n = 200,
was selected as 5-sparse where nonzero elements were 1. In the experiments, the condition number of matrix
A is 130. Then, results for F (xk)− F (x∗) are obtained and compared with the theoretical bounded that is
provided in (30). Respective lower bound on the rate was verified for measurements with and without noise
for two cases that can be seen in Figure (8) and (9).

(a) (b) (c)

Figure 8: Convergence rate analysis for FISTA algorithm with measurements y without noise (λ = 1).
(a) Reconstruction error, (b) Linear scale convergence rate and lower bound on the rate, (c) Log scale
convergence rate and lower bound on the rate.

9.2.4 LISTA

In section 5.2, we provided the theoretical convergence rate analysis for LISTA as a general lower bound. The
analysis was regarding asymptotic global rate of convergence for LISTA and it was shown that ‖xk−x∗‖2 ≈
O(e−k) that can be found in (39). To be more specific,‖xk − x∗‖2 ≤ sBe−ck. s is the sparsity level, B is
maximum absolute value of the true signal, c = −log(2µs−µ) where µ is the mutual coherence of matrix A.

In the experiment, we worked with a rectangle measurement matrix A ∈ Rm×n. Matrix A is obtained
by randomly sampling a Gaussian distribution where Aij ∼ N(0, 1), i, j ∈ {1, ..., n}. x ∈ Rn, where
n = 200,m = 100, was selected as 2-sparse where nonzero elements were 1. After obtaining a training set of
4000 pairs of {x, y} and a validation set of 50 pairs of {x, y}, 5 different networks are trained with different
layer numbers:1,2,4,8,16. Then, results for ‖xk − xtrue‖2 from the validation set are obtained,averaged and
compared with the theoretical bounded that is provided in (39). In theoretical bound, s is chosen as 2, B is
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(a) (b) (c)

Figure 9: Convergence rate analysis for FISTA algorithm with measurements y with noise N(0, 0.2)(λ = 1).
(a) Reconstruction error, (b) Linear scale convergence rate and lower bound on the rate, (c) Log scale
convergence rate and lower bound on the rate.

(a) (b)

Figure 10: Convergence rate analysis for LISTA algorithm. (a) Noiseless setting, (b) Noisy setting with
N(0, 0.2)

chosen 1. c that is the mutual coherence of matrix A is approximated computationally. In order to estimate
mutual coherence, 2 Gaussian vectors are generated and normalized for 100000 times. Then largest inner
product value is taken as the mutual coherence of matrix A that is 0.33. Respective lower bound on the
rate was verified for measurements without noise that can be seen in Figure (10). One observation is that
increasing layer number from 4 to 8 and 16, does not make a significant difference in empirical case. Our
explanation for that is as the network size increases, the training requires additional effort due to overfitting.
We can either increase training set size or add some other forms of regularization.

9.2.5 ADMM

In section 6.1.3, we provided the theoretical convergence rate analysis for ADMM as a general lower bound
where the method uses semidefinite programming. The derivation was for over-relaxed version of ADMM
but by adjusting the parameter α = 1 we were able to obtain the results for ADMM. Also, by adjusting
other parameters of choice accordingly, we obtained the lower bound on the convergence rate for LASSO
problem solved by ADMM as (54), where κ was the ratio of largest and smallest eigenvalues of measurement
matrix ATA.

In the experiment, we worked with a square measurement matrix A ∈ Rn×n to obtain a finite condition
number for ATA for analysis. A is obtained by randomly sampling a Gaussian distribution where Aij ∼
N(0, 1), i, j ∈ {1, ..., n}. x ∈ Rn, n = 200, was selected as 5-sparse where nonzero elements were 1,
ρ =

√
λATAmaxλATAmin and κ = λATAmax/λATAmin was taken in accordance with the derivation. Then,

results for ||ϕk − ϕ∗||/||ϕ0 − ϕ∗|| are obtained and compared with the term (1 − 1
2κ0.5 )k where k is the

iteration number and ϕ∗ is the optimum value for the respective vector as indicated in Theorem 6.1. To
obtain the fixed point value of dual variable, u∗, initially the algorithm runs once until complete convergence
and optimum value of u after the algorithm converges is used as u∗. Respective lower bound on the rate was
verified for measurements with and without noise for two cases that can be seen in Figure (11) and (12).
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Figure 11: Convergence rate analysis for ADMM algorithm with measurements y without noise. Recon-
struction error (a), linear convergence rate and lower bound on the rate (b), log convergence rate and lower
bound on the rate (c).
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Figure 12: Convergence rate analysis for ADMM algorithm with measurements y with Gaussian noise
N(0, 0.2). Reconstruction error (a), linear convergence rate and lower bound on the rate (b), log convergence
rate and lower bound on the rate (c).

9.2.6 PnP

In PnP, since denoiser model can be modified according to the task and preference, we can only analyze
the fixed point convergence as we discussed in section 7.2. For this purpose, we analyzed the fixed point
convergence property of the algorithm with and without noisy measurements, b, with FISTA algorithm
implemented in denoising step, rather than soft thresholding. The selection of FISTA was justified by
having another LASSO step while updating the split variable, z in the ADMM algorithm. In Figure 13,
results can be observed for two cases where x ∈ Rn was 5-sparse and every element of the measurement
matrix A ∈ Rn×n was selected from normal distribution and was scaled such that its largest eigenvalue is 1
according to the assumption 3 in section (7.2).
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Figure 13: Fixed point convergence analysis for PnP algorithm with FISTA as denoiser step. (a) Measure-
ments, b, without noise (b) with noisy measurements b.
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Empirical results comply with the theory and for clean measurements, the algorithm converges to the
exact x. For noisy measurements, algorithm does not exactly converge to x but it converges to a fixed point.

9.3 Empirical comparison of algorithms on the different problem settings
9.3.1 Problem 1: Sparse recovery

In this problem setting, we compared five different algorithms namely ISTA, FISTA,LISTA,ADMM and
PnP on a fixed sparse recovery problem where A ∈ Rm×n;x ∈ Rn; b, n ∈ Rm. A was obtained by randomly
sampling a Gaussian distribution where Aij ∼ N(0, 1). m was chosen as 100 and n was chosen 200.

b = Ax+ n (64)

Two different scenarios were investigated: (i) low noise level N(0, 0.01) and (ii) high noise level N(0, 0.1).
For both cases, non-zero elements of true signal x were 1 and sparsity level was chosen as 5. True signal and
regarding measurement signals can be found in Fig (14).

For low level noise case, four different algorithms results are summarized in Figure 15. All the algorithms
recover well under low noise case. For high level noise case, four different algorithms results are summarized
in Figure 16. Our observation is that ISTA, FISTA and ADMM converges to similar recovery error, on the
other hand, PnP converges to a worse recovery error.

In Figure 17, empirical convergence rates can be found. For both cases, PnP has the fastest conver-
gence rate. Then, FISTA and ADMM have slightly slower convergence rate. Finally, ISTA has the slowest
convergence rate.

We have calculated the empirical required number iterations to reach ε approximate solutions. E.g.
ε = 0.2, then PnP converges in 17 steps, ADMM converges in 69 steps, FISTA converges in 87 steps and
ISTA converges in 475 steps. For ε = 0.1, then PnP converges in 92 steps, ADMM converges in 273 steps,
FISTA converges in 92 steps and ISTA converges in 503 steps.

In Figure 18 and 19, recovery results of LISTA for different number of layers can be seen. In Figure
18, LISTA network is trained with noisy data where noise is sampled from N(0, 0.01). In Figure 19, LISTA
network is trained with noisy data where noise is sampled from N(0, 0.1). For each case, three different
networks are trained with different number of layers: (i)1, (ii)2 and (iii)4. As number of layer increases,
recovery gets better.
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Figure 14: True signal and measurements with two different noise levels. (a) x, (b) Ax, (c) b where n ∼
N(0, 10−2), (d) b where n ∼ N(0, 10−1).
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Figure 15: Recovered signals using different algorithms via LASSO for n ∼ N(0, 10−2). (a) xISTA, (b)
xFISTA, (c) xADMM (d) xPnP−FISTA.
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Figure 16: Recovered signals using different algorithms via LASSO for n ∼ N(0, 10−1). (a) xISTA, (b)
xFISTA, (c) xADMM (d) xPnP−FISTA.
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Figure 17: Empirical Convergence Rates (a) N(0, 0.01) , (b) N(0, 0.1)
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Figure 18: LISTA Recovery for Different Layer Numbers. (a) number of layers = 1 , (b) number of layers =
2 , (c) number of layers = 4
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Figure 19: LISTA Recovery for Different Layer Numbers. (a) number of layers = 1 , (b) number of layers =
2 , (c) number of layers = 4
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9.3.2 Problem 2: LASSO with wavelet decomposition prior

After modifying the objective function as in (13), we compared the performances of the respective algorithms
on this problem by taking F = W , where W is a DWT matrix. Since size of the image puts a constraint on
the memory and computation time, we decided to work with a smaller sized image obtained from MNIST
dataset. The image, x, is 28 × 28. The measurement matrix A for sparse reconstruction case has the size
of 282

2 × 282. For deblurring setting, A ∈ R282×282 was used. Figure 20 demonstrates the sparse nature of
wavelet transform for an image from MNIST dataset.

Notes: Convergence plots for this problem setting in sections 9.3.2 and 9.3.2 were plotted until the
iteration where the error was assigned to its minimum level. Also, plots were obtained using a colorbar that
has a range between (0,1) but errors due nonnegative estimations still contribute to the overall error whereas
they do not show up in the figures.
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Figure 20: Unsorted wavelet transform of an MNIST image. (a) x, (b) z = Wx where W is DWT transform
matrix.

Deblurring LASSO with wavelet decomposition prior:
In this problem setting, we generated a 3×3 normalized Gaussian kernel for horizontal blurring and converted
it to Toeplitz form to obtain A ∈ R282×282 and perform blurring on the 28×28 normalized image x ∈ R28×28

obtained from MNIST dataset. Measurements, b ∈ R28×28 are obtained using (64) a low level of noise and
a high level of noise, where n ∼ N(0, 10−2) and N(0, 5(10−1)) respectively.
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Figure 21: Original and blurred images with two different noise levels. (a) x, (b) Ax, (c) y where n ∼
N(0, 10−2), (d) y where n ∼ N(0, 5(10−2)).

Then, λ = 2(10−4) and λ = 2(10−3) was selected using a similar approach as in section 9.2.1 for both
noise levels respectively and problem was solved using ISTA, FISTA, ADMM and PnP-FISTA algorithms.
Results are included in figures 22 and 24.

NOTE: l2 error plots were plotted until the point that the error decreased to its minimum.
When n ∼ N(0, 5(10−2)), λ needs to be increased in order to regularize the problem further and obtain

meaningful results since the additive noise is substantially high. However, as we increase λ, l1-norm of the
wavelet transform of the deblurred image gets suppressed and this behavior can be observed in the difference
between results in figures 22 and 24.

Sparse recovery via LASSO with wavelet decomposition prior:
In the second setting, we undersampled the same image x ∈ R28×28 in figure 20 using a fat matrix A ∈
R 282

2 ×28
2

with additive noise as in (64). Elements of A were sampled from N(0, 10−1) and λ = 5(10−2)
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Figure 22: Deblurred images using different algorithms via LASSO for n ∼ N(0, 10−2). (a) xISTA, (b)
xFISTA, (c) xADMM (d) xPnP−FISTA.

0 200 400 600 800 1000
number of iterations

2

4

6

|xest xtrue|2
ISTA

0 20 40 60
number of iterations

5.0

7.5

10.0

12.5

15.0
|xest xtrue|2

FISTA

0 50 100 150 200
number of iterations

4

6

8

10
|xest xtrue|2

ADMM

0 50 100 150
number of iterations

4

6

8

10
|xest xtrue|2

PnP-FISTA

(a) (b) (c) (d)

Figure 23: l2 error vs iteration plots for different algorithms for deblurring via LASSO for n ∼ N(0, 10−2)
with wavelet decomposition prior. (a) ISTA, (b) FISTA, (c) ADMM, (d) PnP-FISTA.
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Figure 24: Deblurred images using different algorithms via LASSO for n ∼ N(0, 5(10−2)). (a) xISTA, (b)
xFISTA, (c) xADMM (d) xPnP−FISTA.
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Figure 25: l2 error vs iteration plots for different algorithms for deblurring via LASSO for n ∼ N(0, 5(10−2))
with wavelet decomposition prior. (a) ISTA, (b) FISTA, (c) ADMM, (d) PnP-FISTA.

was selected. Since the problem is already ill-posed, we did not play with the noise level for this case and
proceeded with a relatively low noise of n ∼ N(0, 10−2).

10 Discussion
In this section, we will have an overview of five selected algorithms which were compared under two different
problem settings: (i) sparse recovery and (ii) deblurring by wavelet decomposition. By doing so, we will
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Figure 26: Reconstructed images using different algorithms via LASSO for n ∼ N(0, 10−2). (a) xISTA, (b)
xFISTA, (c) xADMM (d) xPnP−FISTA.
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Figure 27: l2 error vs iteration plots for different algorithms for sparse recovery via LASSO for n ∼ N(0, 10−1)
with wavelet decomposition prior. (a) ISTA, (b) FISTA, (c) ADMM, (d) PnP-FISTA.

reveal algorithms strengths and weaknesses for different applications.
In the first problem, we have implemented ISTA, FISTA, LISTA, ADMM and PnP for sparse recovery.

In that problem, true signal is sparse and we are trying to solve an under-determined system for different
noise levels. When we compare the algorithms in terms of computational cost per iterations, we can conclude
that ADMM and PnP have the largest computational cost per iteration. ISTA, FISTA, LISTA have roughly
the same computational cost per iteration. However, when we compare the algorithms in terms of number
of iterations required to reach an ε approximate solution, we can conclude that LISTA has the fastest
convergence rate which is linear. One caveat is that LISTA utilizes a specific training set and requires
conscientious training to bring out its potential. Generalization can be a huge problem if one does not have
a diverse training set. One observation regarding LISTA for this problem setting is that as we increase
the layer number, the network does not generalize well. It is expected since the complexity of the network
increases while degrees of freedom of the input data stays constant and therefore overfitting occurs. In
order to overcome this problem, we have implemented early stopping and increased the training set size.
Additionally, in this problem setting, we have observed that FISTA is more stable than ADMM and PnP.
In other words, when we increase the noise level, recovery error of FISTA converges to a better point in
a faster manner than others. Especially, final recovery error of PnP significantly increases as we increase
the noise level, which is also expected because of the possible suboptimality of the denoiser implementation.
However, fixed point convergence is observed in both cases which is consistent with the theoretical analysis
of the algorithm. Overall, in this problem setting, we would prefer to apply FISTA when we consider its
convergence rate, implementation simplicity, stability and recovery success.

In the second problem setting, we implemented ISTA, FISTA, ADMM, and PnP with FISTA denoiser
step, excluding LISTA because of the scarcity of input data diversity. In the problem we had an image
from MNIST dataset and a forward model A where the input-output relationship is defined as in 64 and the
prior information related to such images being sparse wavelet transforms was used to solve problem with
modified LASSO formulation. This problem had two subsettings. In the first one, we selected the forward
model as a Gaussian blur kernel which was applied horizontally to the input image. In the second setting,
we tried to perform sparse recovery where the measurement matrix A was a fat matrix with i.i.d. elements.
Computational cost requirement per iteration comparison of the respective algorithms is the same as in first
problem.

After selecting the step sizes for ISTA and FISTA optimally in coherence with the theoretical analysis,
we observed that for deblurring case, recovery error of FISTA was slightly more than the other algorithms.
This can be explained by the iterations of FISTA with "momentum". Due to this effect, algorithm converges
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faster but it alternates around the minimum. As we increase the noise, the problem becomes more ill-posed
and further regularization (by increasing λ) is required to obtain optimal results. PnP-FISTA converges
slightly faster than ADMM, which means that FISTA as denoiser selection has improved the convergence
rate for this problem, rather than using the proximal mapping and ISTA provides the smallest reconstruction
error but converges with a suboptimal rate.

In the sparse recovery setting, we obtained a better reconstruction from PnP-FISTA algorithm but
convergence rate decreased for it. Again, FISTA obtains the fastest convergence to the minimum error but
obtained result is suboptimal. Since the wavelet transform of the image as shown in Figure 20 is not as sparse
as the exactly 5-sparse signal that we used in first problem, reconstruction errors are generally suboptimal
for this setting as expected. For this setting, ADMM or PnP-FISTA would be a good choice for eventual
reconstruction quality but they still suffer from high computation time.

11 Conclusion
In this project, we attempted to investigate several different widely used methods to solve LASSO prob-
lem. Initially we examined LASSO problem shortly and provided information related to LASSO in the
perspective of the experimental settings that we used in the project. Then, we provided detailed information
related to the algorithms that we implemented and investigated throughout the project and provided lower
bound derivations for their convergence rates and proofs of convergence when necessary. After that, we
obtained computational costs for respective algorithms and conducted computational experiments for differ-
ent purposes. These computational experiments covered experimental verification of measurement bound for
random Gaussian matrix since we use such a matrix in the following parts, empirical analysis and verification
of the convergence rates and rate lower bounds for the algorithms and empirical comparison of algorithms
on two different problem settings.
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