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Abstract—In the reviewed paper, a method that utilizes a deep
convolutional neural network (DCNN) as the projection operator
in projected gradient descent (PGD) method is described. The
method is important in the sense that it provides a feedback
mechanism for the image reconstruction task which is usually
non-existent for DCNN based regression approaches. The pro-
posed approach uses a recursive approach to enforce consistency
using gradient descent, and uses the DCNN to project the
intermediate solution to the feasible space of solutions. Moreover,
a specific method is proposed for training the projector DCNN.
The performance of the method is tested on sparse-view CT
reconstruction. In the second part of the report, X-ray CT scatter
correction problem is described, and the proposed method is
adapted to the respective problem and several experiments are
conducted.

I. INTRODUCTION

As we have seen throughout the ECE558 lectures, it is pos-
sible to improve the reconstructed signal quality by incorporat-
ing prior information about the signal itself. In many areas of
the medical imaging, it is especially true and important since
it also provides a way to reduce harmful effects (e.g. high
exposure to X-rays etc.) of the imaging modality on patients.

A. Problem Statement

In many areas such as CT and MRI, the measurement
operator is linear and the process can be formulated as

y = Hx+ n (1)

where y ∈ RM is the vectorized measured signal, x ∈ RN is
the space-domain image that needs to be reconstructed, H ∈
RM×N is the linear measurement (imaging) operator and n ∈
RM is the intrinsic noise or some degradation such as scatter in
X-ray CT. One important point is that usually when we would
like to reduce the harmful effects or reduce the scan time,
n gets more significant and it is necessary to perform some
kind of artifact reduction to address degradations due to it.
Another problem is when the number of measurements is less
than number of unknowns, M << N , there exists the issue
of non-uniqueness of the solution to the inverse problem, with
infinitely many feasible solutions y. To bring y on a feasible
space, different algorithms have been proposed.

B. Background and motivation for the proposed method

• Classical Algorithms: These methods apply the pseudo-
inverse of the measurement operator, H†, or an approx-
imation of it to the measurement, which provides the

least-squares solution. In CT, this amounts to filtered
backprojection

x∗ = HTFy (2)

where F ∈ RM×M is a linear filter, and HT is the
backprojection operator. We covered these topics during
the lectures and homeworks of ECE558 to a great extent.
As we verified in our homeworks, these methods provide
really good results when the number measurements is
sufficiently large (i.e. the signal is sampled sufficiently in
the Fourier domain since Fourier transform of the mea-
surements are central slices of the Fourier transform of
the image). However, when the number of measurements
are significantly small M << N , or there are significant
artifacts due to n, they fail.

• Iterative Algorithms: These methods introduce a regular-
ization term to the optimization problem and by this way
try to constrain the solution space,

x∗ = arg min
x∈RN

(E(Hx,y) + λR(x)), (3)

where E : RM × RM → R+ is a data-fidelity term
(usually the Frobenius norm operator) verifying the con-
sistency of the solution, and R : RN → R+ is the
regularization operator to incorporate the prior knowledge
to restrict the solution space, with a constant λ controlling
the trade-off between these two sources of information.
(3) can be reformulated as

x∗ = arg min
x∈SR

E(Hx,y) (4)

where SR =
{
x ∈ RN : R(x) ≤ τ

}
denotes the set

of feasible solutions, constrained by the constant τ(λ).
Common choices for R are total variation, ||∇x||, `1-
norm of the basis expansion coefficients c of the image
in some transform domain, c = Wx, where W can be
wavelets or DCT, as we have studied in the lectures.
These methods restrict the type of prior knowledge that
can be used.

• Learning Algorithms: These methods either attempt to
learn a non-linear inverse operator directly working on
measurements x∗ = N(y), or working on an initial
reconstruction of the object x∗ = N(x̃), where x̃ = Ay.
By adding nonlinearity to the operator, it becomes pos-
sible to address the non-linear degradations, n, which



sometimes can be a function of the object x as scatter.
These methods require the training of N using the pairs
{xi, yi}, i ∈ {1, . . . ,K − 1} which include the ground-
truth images xi. The main-drawback of these methods
are

– having no worst-case performance guarantee,
– lacking an iterative feedback-mechanism to preserve

data-fidelity.
• Iterative Learning Algorithms: Several methods that can

be included in this group try to unroll an iterative scheme
k steps, and then learn it as an DCNN [1], [2]. Their
drawback is the need to learn the parameters of the net-
work dependent on the iteration scheme. Another group
called plug-and-play (PnP) [3] variations utilizes the
ADMM scheme, but replaces the proximal operator from
soft-thresholding to different denoisers. These methods
still lack the theoretical guarantees and interpretation.
Also, generative models are incorporated for projecting
the solution onto a feasible manifold [4]. Finally, as
authors of this paper indicated there is a very similar
method to the one that is proposed in this paper but it
lacks theoretical justification and guarantees.

II. PROPOSED METHOD: RPGD

A. Major objectives

The major objectives of the proposed method can be sum-
marized as in three main topics:
• learning a DCNN that acts a projection operator onto a

set S which preferably represents the manifold of feasible
(artifact-free) solutions,

• having a good initialization point,
• performing an iterative optimization where in each step

data consistency is preserved by performing gradient
descent on the data-fidelity term E and projecting onto
set S to provide convergence guarantees under certain
conditions.

• having the network (the projector) parameters indepen-
dent of the iterative scheme.

As described in the previous section, the main objective is
essentially to provide convergence guarantees and provide
results that are consistent with the forward operator which
state-of-the-art learning-based methods lack.

B. Theoretical Framework

In this paper, properties of a generalized PGD (which may
not be orthogonal) onto a nonconvex set are shown. Important
notation for the results can be listed as follows. Bε denotes
the `2-ball centered at x with radius ε > 0.

Bε(x) =
{
z ∈ RN : ‖z− x‖2 ≤ ε

}
(5)

The operator T : RN → RN is Lipschitz-continuous with
constant L if

‖T (x)− T (z)‖2 ≤ L‖x− z‖2, ∀x, z ∈ RN (6)

If L < 1, then T is contractive, and non-expansive if L = 1.

Any projector onto set S, PS should be idempotent,
PSPS = PS . The projector is orthogonal if PS(x) =
infz∈S ‖x− z‖2, ∀x ∈ RN .

C. Constrained Least Squares

We can solve the following least-squares problem to obtain
consistent reconstructions while imposing the prior knowledge
that the solution must reside in the set S,

min
x∈S

1

2
‖Hx− y‖22. (7)

The constraint acts as a regularizer in this formulation. If
there is a one-to-one relationship between measurements y
and images x, then this formulation picks a unique estimation
x∗ ∈ S, solving the non-uniqueness issue and making the
problem well-posed. When the measurements are perturbed,
this formulation returns the LS solution in the set S. Finally
the estimate x∗ can be called a local minimizer of (7) if it
also resides on the `2-ball,

∃ε > 0 : ‖Hx∗ − y‖2 ≤ ‖Hx− y‖2, ∀x ∈ S ∩ Bε (x∗) .
(8)

D. Projected Gradient Descent

When S is a closed convex set, solution to (7) can be
obtained by projected gradient descent,

xk+1 = PS
(
xk − γHTHxk + γHTy

)
, (9)

where γ is the step size of the gradient descent and chosen
such that γ < 2/||HTH||2. However, in the problems of
interest, the set S consists of the objects that are usually
medical phantoms and possibly not convex. The authors of
the paper propose to use with some “possibly not orthogonal”
projector PS , and provide conditions for when the method
achieves local minimum of (7). Any local minimizer is a fixed
point of the PGD and it must be reached as iterations proceed
for the algorithm to be convergent:

x = Gγ(x) = PS
(
x− γHTHx + γHTy

)
xk+1 = Gγ(xk), k →∞.

(10)

A sufficient condition for each fixed point of Gγ to be a
local minimizer of (7):

Proposition 1: Let γ > 0 and PS be such that for all x ∈
RN ,

〈z− PSx,x− PSx〉 ≤ 0, ∀z ∈ S ∩ Bε (PSx) (11)

for some ε > 0. Then, any fixed point of the operator Gγ in
(10) is a local minimizer of (7). If (11) is satisfied globally,

〈z− PSx,x− PSx〉 ≤ 0, ∀x ∈ RN , z ∈ S (12)

then any fixed point of Gγ is a solution of (7).
It needs to be noted that (12) implies convexity of S and

(11) is a relaxed and easier to achieve version of it.
Proposition 2: If S is a union of a finite number of closed

convex sets in RN , the orthogonal projector PS onto S satisfies
(11).



These propositions imply that when S is not convex, we can
only hope to find a fixed point as a local minimizer. The
following theorem states the sufficient condition for PGD to
converge to a unique fixed point of Gγ ,.

Theorem 1: Let λmax and λmin be the largest and smallest
eigenvalues of HTH , respectively. If PS satisfies (11) and
is Lipschitz-continuous with L < (λmax + λmin)/(λmax −
λmin), then, for γ = 2/(λmax + λmin), the sequence {xk}
generated by PGD converges to a local minimizer of (7),
independent of the initialization, x0.

Since for any two points s1, s2 ∈ S we have ||s1 − s2|| =
||PS(s1) − PS(s2)||, the projector is not contractive and the
iterations do not converge to zero. This is also verified by
L < 1 for λmin = 0 (H has a non-trivial nullspace) being
not feasible. Still, the combined operator Gγ may not have a
fixed point. It needs to be assumed that Gγ has a set of fixed
points. With this assumption, the authors show that one of
those fixed-points need to be achieved by iterating the averaged
PGD (APGD)

αId + (1− α)Gγ (13)

where α ∈ (0, 1) and Id is the identity operator.
Theorem 2: Let λmax be the largest eigenvalue of HTH .

If PS satisfies (11) and is a non-expansive operator such that
Gγ in (10) has a fixed point for some γ < 2/λmax, then the
sequence {xk} generated by APGD, with

xk+1 = (1− α)xk + αGγ (xk) (14)

for α ∈ (0, 1), converges to a local minimizer of (7), regardless
of the initialization.

E. Relaxation with Guaranteed Convergence

Theorems 1 and 2 are not helpful when we employ a DCNN
as a PS because Lipschitz continuity cannot be enforced. In
this case, the authors propose a third version of the PGD
as the relaxed PGD (RPGD) where PS is replaced by a
general operator F . Also, two sequences {ck} to control the
convergence rate and αk as the relaxation parameters are
introduced. The algorithm can be seen in Fig. 1.

Despite the relaxation step, the algorithm still converges
under certain assumptions as stated in Theorem 3.

Theorem 3: Let the input sequence {ck} of RPGD algo-
rithm be asymptotically upper-bounded by C < 1. Then, the
following holds for reconstructed images {xk};

1) xk → x∗ as k →∞, for all choices of F ;
2) if F is continuous and the relaxation parameters {αk}

are lower-bounded by ε > 0, then x∗ is a fixed point of

Gγ(x) = F
(
x− γHTHx + γHTy

)
; (15)

3) if, in addition to (ii), F is indeed a projector onto S that
satisfies (11), then x∗ is a local minimizer of (7).

While finding a local minima of (7) like PGD or APGD
given that (ii) and (iii) are satisfied in Theorem 3, RPGD
does not require F to be strictly a projection operator to
guarantee convergence. The detailed proof of convergence

Fig. 1: Relaxed Projected Gradient Descent (RPGD) algo-
rithm.

Fig. 2: Block diagram of (a) the PGD with CNN as the pro-
jector, and (b) Relaxed Projected Gradient Descent (RPGD).

for the proposed algorithm can be found in [5]. However,
an open question is how meaningful is the fixed point that
RPGD converges when (iii) in Theorem 3 is not satisfied
since convergence does not necessarily means that the result
is desirable.

F. Training a CNN as a Projector

Although it may not be possible to obtain a projector as a
CNN, two desirable properties of a projector that we want the
CNN to have can be listed as

1) idempotence PS(x) = x, and
2) x = PS(x̃) where x̃ is a perturbed version of x.

Thus, given the clean images, N−1 perturbed versions of each
image is generated and the DCNN is trained by the following
loss function for T epochs,

J(θ) =

N∑
n=1

Q∑
q=1

‖xq − CNNθ (x̃q,n)‖22︸ ︷︷ ︸
Jn(θ)

. (16)



An important point is that the clean images are also used
as pairs (n = 1) to enforce idempotence of the model. To,
prevent overfitting of a certain type, the type of perturbations
are selected as

x̃q,1 = xq

x̃q,2 = AHxq

x̃q,3 = CNNθt−1

(
x̃q,2

)
,

(17)

where A is the FBP operator, H is the radon transform. The
third option stands as a dynamic linearly perturbed set where
θt are the CNN parameters after the update of t epochs. This
is useful since it provides a way to bound errors on CNN and
provides a sense of Lipschitz continuity and greatly increases
the training diversity.

III. SCATTER IN X-RAY CT
In X-ray CT, measurements of the attenuation of rays as they

pass through the object are used to find the linear attenuation
coefficient map f(x), x ∈ R2 of the object. The set of line
integral projections is obtained from the object as

g(t, θ) = (Rf)(t, θ), (18)

where R is the 2D Radon transform.
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Fig. 3: 2D parallel-beam CT geometry, and x-ray scatter. An
x-ray directed toward the detector position (0, θ) reaches the
detector at (t2, θ) after scattering in the object f , causing
τ(t2, θ) 6= p(t2, θ).

The inverse problem is to compute the inverse Radon
transform f(x) = (R−1g)(x). Filtered-backprojection (FBP)
R̂−1 is one alternative solution for this problem.

Using an energy-integrating detector, the primary measure-
ment at position t and angle θ is obtained as

p(t, θ) = I0

∫
c(E)e−gE(t,θ)dE (19)

where I0 is the vacuum (or bright field) fluence measurement,
c(E) denotes the fraction of source photon fluence scaled
by the energy-dependent detector response at energy E, and

where
∫
c(E)dE = 1, and fE(x) is the linear attenuation

coefficient at energy E and at position x.
With a monochromatic source with photon energy E0, (19)

reduces to

p(t, θ) = I0e
−g(t,θ), (20)

where the dependence on E0 is omitted to simplify notation.
In this case, the line integral projection is available from the
measurement by a logarithm, g(t, θ) = − ln[p(t, θ)/I0].

Considering the scattering events, the total measurement at
angle θ that is obtained is

τ(t, θ) = p(t, θ) + s(t, θ) (21)

where s(t, θ) is an additive scatter term, which is a nonlinear
function of the object. This additive contribution leads to
artifacts in the analytical FBP reconstruction if the total
measurement is used to directly reconstruct the object,

g̃ = − ln[τ(t, θ)/I0] (22)

f̃(x) = (R̂−1g̃)(x). (23)

IV. PROBLEM STATEMENT FOR SCATTER CORRECTION

We assume that we are given a set total measurements
τ{τ θ, θ ∈ Θ} which, without the scatter, would suffice for
accurate reconstruction of the object f by FBP. The main
goal is to produce a reconstruction f∗ that approximates the
FBP reconstruction f̂ = g that would be obtained from
g(t, θ) = − ln[p(t, θ)/I0], where p is the set of primary
measurements.

V. PROPOSED METHOD FOR CNN-BASED PGD FOR
CONSISTENT SCATTER CORRECTION

The main objective of the course project is to utilize the
novel technique developed in [5] to perform a measurement
consistent scatter correction in the reconstruction domain. For
this purpose, a couple algorithms were tested. The formula-
tions of sparse-view CT (the problem that is considered in [5])
and scatter correction in CT can be made almost equivalent
as follows

g̃ = Rf + ns(f) (24)

where y , g is the measurement (scatter-corrupted line inte-
gral projections), H , R is the measurement operator (Radon
transform), and n = ns(f) is the process specific degradation
term, related to the effect of scatter on the line integral
projections. One important difference is that the degradation
is dependent on the object for scatter correction. However, it
is assumed to be independent for the scope of this project.



VI. DATASET

For the scatter correction experiments, 2D axial slices
obtained from the phantoms of TCIA dataset [6] are used.
Total of 30 phantoms were divided into 27 training and 3 test
phantoms. These phantoms were mapped to a tissue-mapping
pre-processing where the attenuation coefficient values were
mapped to 5 different materials: (1) air, (2) lung, (3) adipose,
(4) soft tissue and (5) bone. After this step, these phan-
toms were fed to a GPU-based Monte-Carlo X-ray simulator,
namely MC-GPU [7], which simulates the propagation of
rays for a given source, phantom, and detector setting for the
cone beam CT geometry. Then, these total measurements were
reconstructed using ASTRA toolbox using the parameters
describing the simulation geometry. MC-GPU is capable of
providing total and primary measurements separately, saving
the need for computing theoretical projections using Beer’s
Law. Sample slices reconstructed from total and primary
measurements are illustrated in Fig. 4.
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(a) Primary measurement reconstructions
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(b) Total measurement reconstructions

Fig. 4: Polychromatic CBCT reconstructions of central axial
slices. Using (a) primary measurements p(t, θ) (assumed to
be ground-truth reconstructions), (b) total (scatter-corrupted)
measurements τ(t, θ).

VII. RESULTS

A. Total measurement initial reconstruction and RPGD

In this subsection, the proposed RPGD method was imple-
mented as it is in the original paper. The loss function in (16)
was minimized using

x̃q,1 = xq

x̃q,2 = AHxq

x̃q,3 = CNNθt−1

(
x̃q,2

) (25)

where H is the 2D radon transform, A is the FBP with ramp
filtering, and CNNθt is a DCNN with the UNET [8] structure
with a skip connection between input and output.

As expected, enforcing measurement consistency directly
without any preliminary scatter correction on the initial re-
construction x0 fails to perform scatter correction significantly.

The convergence and reconstruction results for a test slice are
provided in Figures 12, 13 and 14.
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Fig. 5: `2 norm of the difference between consecutive itera-
tions for total measurement initial reconstruction and RPGD
setting for hyperparameters α0 = 8.10−2, γ = 4.10−2, and
cn = (0.8)1.
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Fig. 6: PSNR values of consecutive iterations for total mea-
surement initial reconstruction and RPGD setting for hyper-
parameters α0 = 8.10−2, γ = 4.10−2, and cn = (0.8)1.

B. Total measurement reconstruction and modified RPGD

In this setting, the proposed RPGD method was modified
in the following form,

x̃q,1 = xq

x̃q,2 = AHxq

x̃q,3 = CNNθt−1

(
x̃q,2

)
x̃q,4 = Ayq

(26)

where H is the 2D radon transform, A is the FBP with ramp
filtering, and CNNθt is a DCNN with the UNET [8] structure
with a skip connection between input and output as before. As
the fourth batch in the sequential training, scatter corrupted
reconstructions were added to the RPGD training.
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Fig. 7: Scatter-corrupted initial reconstruction (Left) and final
output of RPGD iterations (Right) for hyperparameters α0 =
8.10−2, γ = 4.10−2, and cn = (0.8)1.

An important difference compared to other experiments,
for this setting, whole training dataset was trained at once,
rather than a sequential training as proposed in the original
method. However, this scheme has significantly failed to
provide convergence to an optimal point. Convergence results
and reconstruction outputs are provided in Figures 8, 9, 10,
and 11.
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Fig. 8: `2 norm of the difference between consecutive it-
erations for total measurement reconstruction and modified
RPGD setting for hyperparameters α0 = 2.10−2, γ = 4.10−2,
and cn = (0.8)1.

C. Scatter-corrected initial reconstruction and RPGD

For these experiments, the proposed RPGD method was
implemented as it is in the original paper, however, the initial
reconstruction is pre-processed using another DCNN having
the UNET architecture. Likewise, the loss function in (16)
was minimized using

x̃q,1 = xq

x̃q,2 = CNNsc
ξ (AHxq)

x̃q,3 = CNNθt−1

(
x̃q,2

) (27)
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Fig. 9: PSNR values of consecutive iterations for total mea-
surement reconstruction and modified RPGD setting for hy-
perparameters α0 = 2.10−2, γ = 4.10−2, and cn = (0.8)1.
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Fig. 10: Scatter-corrupted initial reconstruction (Left) and final
output of RPGD iterations (Right) for hyperparameters α0 =
2.10−2, γ = 4.10−2, and cn = (0.8)1.
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Fig. 11: Scatter-corrupted initial reconstruction (Left) and final
output of RPGD iterations (Right) for hyperparameters α0 =
2.10−2, γ = 4.10−2, and cn = (0.8)1.



where H is the 2D radon transform, A is the FBP with ramp
filtering, and CNNθt is a DCNN with the UNET [8] structure
with a skip connection between input and output as before.
CNNsc

ξ is the DCNN used to perform scatter correction on
the initial reconstruction. This network was trained using the
following loss function:

Jsc(ξ) =

Q∑
q=1

||xq − CNNsc
ξ (Ayq)||22. (28)
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Fig. 12: `2 norm of the difference between consecutive iter-
ations for scatter-corrected initial reconstruction and RPGD
setting for hyperparameters α0 = 8.10−2, γ = 4.10−2, and
cn = (0.8)1.
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Fig. 13: PSNR values of consecutive iterations for scatter-
corrected initial reconstruction and RPGD setting for hyper-
parameters α0 = 8.10−2, γ = 4.10−2, and cn = (0.8)1.

D. Comparison with a DCNN based projection-domain scatter
correction method

A baseline method for data-driven projection-domain scatter
correction, namely Deep Scatter Correction (DSE), is proposed
in [9] where using a DCNN having a UNET [8] structure,
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Fig. 14: Scatter-corrected initial reconstruction (Left) and final
output of RPGD iterations (Right) for hyperparameters α0 =
8.10−2, γ = 4.10−2, and cn = (0.8)1.

Fig. 15: Absolute error figures for scatter-corrupted recon-
struction (Left) and Scatter-corrected initial reconstruction and
RPGD output (Right). Color range is reduced to a tenth of the
reconstruction figure range.

the primary measurements p are estimated from the total
measurements τ as follows:

p(t, θ)∗ = CNNβ(τ(t, θ)) (29)

Using the dataset in Section VI with the same 27 phantoms
for training and the remaining 3 phantoms as the test set, CNN
is trained using the following loss function

β

∑
θ

||τθ − pθ||22 (30)

using the Adam optimizer. Results for the scatter corrected re-
construction for the same axial slice from the test set is shown
in Figures 16 and 17. These results indicate that performing
a measurement consistent correction on the reconstruction
domain cannot perform as good as this baseline method that
works over projection-domain data.

E. PSNR values of test reconstructions

In Table VII-E, the respective best PSNR values for each
experiment in this section is described.



Fig. 16: Scatter-corrupted reconstruction (Left), scatter-
corrected initial reconstruction (Middle) and output of DSE
(Right).

Fig. 17: Absolute error figures for scatter-corrupted reconstruc-
tion (Left) and DSE output (Right). Color range is reduced to
a tenth of the reconstruction figure range.

Experiment/Method PSNR (dB)

Total meas. init. recon. and RPGD 26.9
Total meas. recon. and modified RPGD 31.1
Scatter-corrected init. recon. and RPGD 35.5

DSE 37.7

TABLE I: Best PSNR values obtained by each experi-
ment/method described in Section VII.

VIII. CONCLUSIONS

In this project, a convergent and iterative data-driven method
RPGD investigated and its performance was tested on the
scatter correction problem in X-ray CT. Although the original
method does not provide sufficient scatter correction, it was
possible to obtain satisfactory results after modifying the
method on how it obtains the initial reconstruction. However,
even after this modification, a baseline method which performs
scatter correction on projection domain still performs signifi-
cantly better than the modified RPGD method. An important
reason for this observation can be the requirement of a larger
training dataset for the projection operator.
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