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Abstract—This project final report for ECE513 - Vector Space Signal
Processing includes the detailed description of the spatially varying out-
of-focus blur problem, detailed critical investigation of the chosen main
paper, and obtained experimental results regarding the content of the
project.

I. INTRODUCTION

Almost all digital images suffer from a common distortion which
is blur. Causes of blur can be listed as out-of-focus, shake, motion
etc [12]. Focus of the main paper of this project and the project
itself is out-of-focus blur. Often times, when a real image is recorded
by a camera, some part of the pixels are in focus but others are
not. Out-of-focus blur caused by the existence of several trade-offs
between aperture-size, depth-of-field and exposure time while
acquiring images. A longer exposure time allow sensors to capture
sufficient light but it may lead to a motion-blurred image. On the
other hand, utilizing a larger aperture can prevent the motion-blur
but it causes out-of-focus blur and limited depth-of-field. [39]
Thinking pixel-wise, out-of-focus blur is caused by a pixel capturing
additional light form its surrounding pixels and it is characterized by
a point spread function (PSF) or kernel. Currently, many methods
assume that blur is uniform on the whole image, meaning that the
measurement is a noisy version of the original image convolved
with a single blurring kernel. However, blur generally varies over
the image plane and this type of blur is called as spatially-variant.

Removal of this type of blur has two main challenges:
1) It constitutes a blind deconvolution problem since both blur

kernel and the convolved true image is unknown.
2) Resulting problem is fairly complex since blur kernel differs

from pixel to pixel and it prevents us to use a circulant matrix
to deconvolve. Because of this, many existing methods segment
the blurred image into regions and use a uniform kernel for each
region. (segmentation-based-deblurring methods) However, ma-
jority of natural images can not be segmented reasonably.

In the rest of the report, main paper is discussed in the perspective
of the course content of ECE513. Major critics, additions and
explanations are marked with bold font to indicate their places.

Important note: In the following parts, work done by the authors
of the main paper [1] is investigated. Corrections and further expla-
nations regarding proofs and links to course content is highlighted
where necessary after or before the proofs and propositions. Also,
connections to the lecture notes are highlighted by bold font and
LECTURE NOTES title. Also, results related to own implementa-
tion is included at the end of the paper.

II. BLUR MAP ESTIMATION AND KERNEL MATRIX

CONSTRUCTION

The kernel or PSF of out-of-focus blur is usually approximated
by a 2D Gaussian distribution function, denoted as ”g(x, σ(x))”.
In this formulation, standard deviation σ(x), measures the amount

of blur on the pixel x = (x, y), where the pair (x, y) is the 2D
coordinates of the corresponding pixel. Thus, a reasonable approach
is to predict σ(x) first and utilize it to generate kernel g(x, σ(x)).
Then, removing the blur using g(x, σ(x)) ∈ RMxN , which is the
same size of the deblurred image. σ(x) is generally called as ”blur
map”.

Therefore, we can formulate our system as follows:

b(x) = (g ~ f)(x) + n(x) =

∫
Ω

g(y)f(x− y)dy + n(x) (1)

where b : Ω → R is the blurred image of size M x N, modeled
as the convolution of its clear version f at every pixel x, ~ is the
convolution operator, n is the additive noise. Only b is given in
this equation which makes (1) an underconstrained problem, where
number of unknown variables exceeds the number of equations.
Additional assumptions are needed to obtain sufficient results.

A. Blur Map Estimation

Usually, blurred image is smoother than the original version of
the image due to the nature of blur on digital images. This means
as image gets more blurry, average difference between pixel values
of the image decreases. This motivates the idea of using a variable
describing the overall difference in wx to quantify the amount of
blur on x, where wx is a neigborhood of the pixel x.

Additional information (Holder’s Coefficient, Holder Spaces):
Authors of the paper suggest that Holder’s coefficient satisfies
this requirement without giving any additional information on
the topic of Holder’s coefficient. Thus, it is fairly helpful to
provide some information related to this topic before going
further with the project.

Holder’s Condition and Holder’s Coefficient: A real or complex-
valued function satisfies is Holder continuous, if there exist
nonnegative real constants C,α > 0 such that

|f(x)− f(y)| ≤ C||x− y||α (2)

∀x, y ∈ dom(f). The number α is called the exponent of the Holder
condition. If the function satisfies the condition with α > 1 it is
a constant function. If α = 1, the function satisfies a Lipschitz
condition. For any α > 0, the condition implies the function is
uniformly continuous.

Holder Spaces: Holder space is a Ck,α(Ω) where Ω is an open
some Euclidean space and k ≥ 0 is an integer, representing that those
functions on Ω having

1) continuous derivatives up to order k
2) such that kth partial derivatives are Holder continuous with

exponent α, where 0 < α ≤ 1.



Holder spaces are vector spaces since they satisfy the vector ad-
dition and scalar multiplication and remaining 8 axioms: Associ-
avity, commutativity, identity element, distributivity etc. Assuming
f, g ∈ Ck,α(Ω) (meaning that they satisfy both conditions listed
above), then, f + g ∈ Ck,α(Ω) and βf, βg ∈ Ck,α(Ω) holds.

LECTURE NOTES - Chapter 4 - Linear Vector Spaces:
A linear vector space is a set X along with a field of scalars F,

and two operations + : X ×X → X and . : F ×X → X s.t.

1. a+ b = b+ a for a, b ∈ X .

2. (a+ b) + c = a+ (b+ c) for a, b, c ∈ X .

3. 0 ∈ X such that a+ 0 = a for every a ∈ X .

4. α · (β · X ) = (αβ) · X

5. α · (b+ c) = α · b+ α · c

6. (α+ β) · a = α · a + β · a

7. 0 · a = 0, 1 · a = a

Furthermore, Holder coefficient where k = 0,

|f |Ck,α(Ω) = sup
x 6=y∈Ω

f(x)− f(y)

||x− y||α (3)

is finite, the function is Holder continuous and coefficient serves as
a seminorm. It satisfies all of the properties of a norm except that
it can be 0 without [b]βwx

LECTURE NOTES - Chapter 4 - Norm / Seminorm: A norm
is a real-valued functional on a LVS X, ||.|| : X → R, that satisfies:

1) ‖x‖ ≥ 0 for all x ∈ X , with equality if and only if x = 0
2) ‖x+ z‖ ≤ ‖x‖+ ‖z‖ for all x, z ∈ X
3) ‖αx‖ = |α|‖x‖ for all x ∈ X , α ∈ F
Likewise, semi-norm is defined as a relaxed version of norm:

Additional information - Seminorm: A seminorm is a functional
on a LVS X, ||.|| : X → R, that satisfies:

1) ‖x‖ ≥ 0 (||x|| = 0 can be satisfied without x = 0)
2) ‖cx‖ = |c|‖x‖, and
3) ‖x+ y‖ ≤ ‖x‖+ ‖y‖, ∀x, y ∈ X and c ∈ F
As a regularity, the Holder coefficient has been applied to many

image processing tasks. In the context of the paper, Holder’s coeffi-
cient is defined as:

[b]βwx = sup
y,z∈wx, y 6=z

{ |b(y)− b(z)|
||y − z||β } (4)

where β ≥ 0 is a parameter. If it is taken as 0, we obtain

[b]0wx = max
y∈wx

{b(y)} − min
y∈wx

{b(y)} (5)

Then, we can treat
[b]βwx
[b]0wx

as the normalized Holder coefficient
(NHC). For practical purposes, authors take |wx| = 7x7 and β = 2.

Empirically, it is observed that NHC varies almost inversely to the
level of the blur. For practical purposes, authors treated this relation
as a linear correlation.

Fig. 1: The distributions of the NHC for in-focus (red) and blur
images (blue). [1]

Authors provided the empirical results related to the distributions
of the NHC for in-focus and out-of-focus blur images using 1000
natural blurry and 1000 natural in-focus images.

Then, an initial version of blur map ˜σ(x) is obtained as

˜σ(x) =
C

[b]
β
wx

[b]0wx

= C
[b]0wx
[b]βwx

(6)

where C is a constant parameter. This initial version of blur map
has excessive sharp transitions due to edges and noise. This causes
a need for refinement. Blur map refinement problem can be defined
as follows:

ν||∇σ||+ ||Π� (σ − σ̃)||2 (7)

where σ > 0 is a balanced parameter, ∇ is gradient operator and �
is the Hadamard product. Π is an edge indicator function,

Π(x) =

{
1, ‖∇b(x)‖ > ξ
0, otherwise

where ξ > 0 is a parameter. Respective problem E(σ) can be
solved using Chambolle-Pock algorithm [2]:

1) pn+ 1
2 = pn + τλ∇σn

2) pn+1 = p
n+1

2

max(1,|pn+1
2 |)

3) σn+1 = Π�σ̃+σn

γΠ+1

where τ and γ are positive parameters.

Fig. 2: A spatially-varying blurred image



Fig. 3: The blur maps of Figure 2 (800 600 pixels): (a) the rough
blur map σ̃; (b) the refined blur map σ. [1]

B. Kernel Matrix Analysis:

Having blur map computed, blur kernel g(x, σ(x)) can be com-
puted. However, solution for (1) is has a very high time complexity
since σ is different for every pixel, (1) should be solved pixel-by-
pixel. Thus, a reformulation of the corresponding problem is used:

b = Af + n (8)

where b, f, n are the vectorized of corresponding 2D image
counterparts in (1) of size M x N. Kernel matrix A (size MN x
MN) is the matrix form of the kernel g(x, σ(x)). Different than the
spatially-invariant matrices, rows of spatially-variant matrix A can
have different variances. Furthermore, there are additional properties
that the matrix A satisfies.

Proposition 1. (Error Correction: The original version of this
proposition takes A into account instead of ATA. However, as I
will show in the proof, in order to use A, we need an additional
symmetry property which does not necessarily hold for the
matrix A. Thus, a corrected version is provided.) Let λm be the
largest eigenvalue of ATA, then the λm ≤ 1 holds.

Additional Proof: Proof for this proposition requires the
utilization of Gershgorin’s Circle Theorem. However, authors
used the result of this theorem without proving it. Thus, I
provide the proof of this theorem.

LECTURE HW2 - Gershgorin’s Circle Theorem: Let
Rj(A) =

∑
j 6=i |aji| and D(aii, Ri) ⊆ C be a closed disc centered

at Aii with radius Ri. Such a disc is called a Gershgorin disc.
Theorem states that every eigenvalue of A lies in at least one of D’s.

Proof: Let (x, λ) be an eigenpair of A where xi = 1 and |xj | ≤
1 for j 6= i. In particular: Ax = λx can be written. Then,∑

j

aijxj = λxi = λ.1 = λ

Thus,
∑
j 6=i aijxj + aiixi =

∑
j 6=i aijxj + aii = λ. Applying

triangular inequality, we obtain:

|λ− aii| = |
∑
j 6=i

aijxj | ≤
∑
j 6=i

|aij ||xj | ≤
∑
j 6=i

|aij | = Ri

Now, we can apply this theorem to prove the proposed claim.

Proof of Proposition 1 (cntd.): By Gershgorin’s Circle Theorem,
all eigenvalues of B = ATA are located in the union of MN discs,
centered at Bjj’s. We can express this union as:

∪MN
j=1 {|z −Bjj | ≤ Rj(B)} = G(B)

G(B) ⊂ U , U being the unit disc centered at origin. This can be
further shown as:

Rj(B) ≤ Rj(B) + |Bjj | =
MN∑
k=1

|Bjk| = 1

Following the definition provided at the beginning of the proof for
Gershgorin’s Circle Theorem, sum of Rj(B) (radius of the disc)
and Bjj (center) does not exceed 1 for any of the MN circles. This
guarantees that every such circle should stay inside the unit circle.
Thus, all eigenvalues are smaller than the radius of U, i.e. λm ≤ 1.

Proposition 2. Let x = (x1, x2), y = (y1, y2) and let diag(σ)
be the corresponding diagonal matrix, and Ai be the matrix form of
1-D Gaussian kernel gi toward i-axis,

gi(x)(yi) =
1√

2πσ(x)
exp(

−|yi − xi|2

2σ2(x)
), i = 1, 2

Then, we have
A =

√
2πdiag(σ)A1A2

Proof: We know that g(x, σ(x)) is a 2D Gaussian distribution
function.

g(x, σ(x))(y) =
1√

2πσ(x)
exp(

−||y− x||2

2σ2(x)
)

for y ∈ Nx, where Nx is a specified neighborhood of x.
Using the separability of Gaussian fct. this can be rewritten as:

g(x, σ(x))(y) =
1√

2πσ(x)
exp(

−|y1 − x1|2

2σ2(x)
)exp(

−|y2 − x2|2

2σ2(x)
)

=
√

2πσ(x)g1(x)(y1)g2(x)(y2)

Then, (g~ f)(x) =
√

2πσ(x)g1(x)~ g2(x)~ f(x). Matrix formula-
tion of the respective formula can be written for the complete image
as: √

2πdiag(σ)A1A2.

For the remaining proofs of propositions, we need to declare the
induced norm for matrix A as

||A|| = max{||AΦ|| : ||Φ|| ≤ 1}

Proposition 3.: Let σm be the largest value in |σ| the norm
of the kernel A is bounded by ||A|| ≤ L where L =

√
2π(π

2

2
−2)σm.

Additional Proof: Before proving this proposition, we need
to prove the CS inequality. Authors used the result without
showing the correctness of it. Thus, I add the corresponding
proof.

LECTURE NOTES - Chapter 4 - Cauchy-Schwarz Inequality:
For every x, y ∈ X ,

| < x, y > | ≤
√
< x, x >

√
< y, y >

with equality if and only if y = 0 or x = αy, α ∈ F .



Proof: The result is obvious for y = 0. For y 6= 0, by the
positivity of the inner product,

0 ≤< x− αy, x− αy >=

< x, x > +|α|2 < y, y > −α < y, x > +α < x, y >

Taking α = 〈x,y〉
〈y,y〉 , expression simplifies to

0 ≤< x, x > −| < x, y > |2

< y, y >

which leads to the inequality.
Proof of Proposition 3 (cntd.): Using Property 2.2, following

result using Cauchy-Schwarz inequality, knowing that it can be
generalized for more than to elements:

||A|| =
√

2π||A1|| ||A2|| ||diag(σm)|| (9)

Also, we know that the induced norm of the diag(σ) is its largest
singular value:

||diag(σ)|| = σm

LECTURE NOTES - Chapter 2 - Thm 2.5: Let W = UΣV ∗

be the SVD decomposition of the framelet transform matrix W. We
can show that the induced norm of W is equal to its largest singular
value. Thm 2.5 states that:

||W || = max
||x||2=1 , x⊥v1,...,vk

||Wx||22 = σ2
k+1 , k = 0, . . . , n

=⇒ max
||x||2=1

||Wx||22 = ||W ||2 = σ2
1 if k = 0

where ||W ||2 = ||W || is the induced norm of the matrix W.
Proof: Let z = Ṽ ∗x. Then, ||z||22 = x∗Ṽ Ṽ ∗x = ||x||22. Thus,

max
||x||2=1 , x⊥v1,...,vk

||Wx||22 = max
||z||2=1 , z1=...=zk=0

||WṼ z||22

= max
||z||2=1 , z1=...=zk=0

||ŨΣ̃z||22

Proof of Proposition 3 (cntd.): To obtain bound of ||A1||, we can
look at bound of ||A1Φ||2, where Φ is as stated in the induced norm
definition.

||A1Φ||2 =

MN∑
j=1

(

MN∑
k=1

A1
jkΦk)2 ≤ 2

MN∑
j=1

MN∑
k=1

(A1
jk)2(Φk)2

= 2

MN∑
j=1

(

MN∑
k=1

(A1
jk)2)Φ2

k (10)

where A1 is the matrix form of g1. The inequality follows as a
generalization of a2 + b2 ≥ 2ab which is not stated in the paper. Let
j = (x2 − 1)M + x1. Then, jth row of A1 is exactly constructed
from the discrete version of g1(x). Given g1 with arbitrary variance,
following inequality holds:

g1(x)(y1) <
1

2k + 1
(11)

when |y1 − x1| = k. Reason of why this inequality holds is not
explicitly stated in the paper. Therefore, I will provide the explana-
tion. Since image plane is a discrete 2D plane and respective g1 and
g2 are discrete 1D Gaussian distribution functions, for instance, if

|y1 − x1| = k, meaning that point of interest y1 is k pixels away
from the mean point |x1|. Since any Gaussian function has its peak at
its mean and sum of its all elements is 1, if g1(x)(y1) ≤ 1

2k+1
, rest

of the closer elements should exceed this value and sum exceeds 1.
Thus, (11) should hold. Following this, since A1 is the matrix form
of g1, upper bound of A1

ij is given by the following equation as a
generalization:

A1
jk <

1

2|j − k|+ 1

where j, k ∈ [1,MN ]. Then, (10) can be rewritten as:

||A1Φ||2 ≤ 2

MN∑
k=1

Φ2
k

MN∑
j=1

(
1

2|j − k|+ 1
)2

≤ 2

MN∑
k=1

Φ2
k(2
∑
j=0

1

(2j + 1)2
− 1)

≤ 2(2
∑
j=0

1

(2j + 1)2
− 1) = 2(

3

2

∑
j=1

1

j2
− 1) =

π2

2
− 2

=⇒ ||A1|| <
√
π2

2
− 2

Also, g2 is the same as g1 but it is in the other direction, meaning
that the bound for ||A2|| is the same as ||A1||.

Combining the results and plugging them into (9), we obtain:

||A|| ≤
√

2π||diag(σ)|| ||A1|| ||A2|| ≤
√

2π(
π2

2
− 2)σm = L

Sparse Kernel Matrix Analysis: Theoretically, g(x, σ(x)) will be
nonzero at every point of the image, thus, Nx should be the entire
image. However, in practice, pixels at a distance k ≥ 3σ(x) can be
considered as 0 with no contributions to the measurements since g is
a Gaussian distribution function with mean x and standard deviation
σ(x).

This suggest that radius of the neighborhood Nx can be taken as
rx = 3σ(x) is set for convolution processes.

A becomes sparse, each column/row having at most (2r + 1)2

non-zero elements where r = max{rx} is the determined by the
largest standard deviation that Gaussian distributions on each pixel
has. (2r+1)2 is the approximate number of nonzero elements because
the region that is selected as the neighborhood is a square region
having one edge of length (2r + 1).

In accordance with the respective claim, following proposition
can be suggested:
Proposition 4: The norm of the sparse kernel matrix A is bounded
by ||A|| < (2r + 1)2.

Additional Proof: Proof of this theorem is not stated in the
paper itself. They referred to another paper for the result that
they readily use for their purposes. Thus, starting form the
given reference, I provide the proof completely.

For the upper bound of the eigenvalues of the matrix A†A, I will
refer to Theorem 2.1. in [3]:

Theorem: Assuming that caj(A) =
∑I
i=1 |Aij |

2−a and rai(A) =∑J
j=1 |Aij |

2−a for any a in the interval [0,2], no eigenvalue of the
matrix A†A exceeds the maximum of

J∑
j=1

caj |Aij |2−a



over all i, nor the maximum of

I∑
i=1

rai|Aij |a

over all j. Thus, no eigenvalue of A†A exceeds cara.
Proof of the theorem: Let A†Av = λv and w = Av. Then,

||A†w||2 = λ||w||2

can be written. Utilizing Cauchy-Schwarz inequality (as shown
previous in the proof of Proposition 2.3): (LECTURE NOTES -
Chapter 4 - Thm 4.6)

|
I∑
i=1

Āijwi|2 ≤ (

I∑
i=1

|Aij |
a
2 |Aij |1−

a
2 |wi|)2

≤ (

I∑
i=1

|Aij |a)(

I∑
i=1

|Aij |2−a|wi|2)

Following this result, we can write

||A†w||2 ≤
J∑
j=1

(caj(

I∑
i=1

|Aij |2−a|wi|2)) =

I∑
i=1

(

J∑
j=1

caj |Aij |2−a)|wi|2

≤ max
i

(

J∑
j=1

caj |Aij |2−a)||w||2

As given at the beginning of the proof, expressions∑J
j=1 caj |Aij |

2−a and
∑I
i=1 rai|Aij |

a are same and obtained
upper bound can also be expressed as

≤ max
j

(

I∑
i=1

rai|Aij |a)||w||2

which concludes the proof of Theorem 2.1 in [3].

Then, using the result of this proof, we can show that Proposition
2.4 holds true. Utilizing the result, we can state that all singular values
of A, σi , i ∈ {1, ...,MN} satisfies the following inequality:

σi ≤ max
k
{
MN∑
j=1

|Ajk|α}.max
j
{
MN∑
k=1

|Ajk|2−α}

Letting α = 1, since
∑MN
k=1 |Ajk| = 1 and each column has at most

(2r + 1)2 nonzero elements, we have:

||A|| ≤ max
k
{
MN∑
j=1

|Ajk|}max
j
{
MN∑
k=1

|Ajk|} ≤ max
k
{
MN∑
j=1

|Ajk|} ≤ (2r+1)2

since maxj{
∑MN
k=1 |Ajk|} ≤ 1.

III. DEBLURRING FORMULATION BASED ON FRAMELET SYSTEM:

In the paper, authors provided brief introduction to the framelet
system in univariate setting. Fortunately, for bivariate settings, tensor
product can be used to generalize obtained results.

A. Framelets and image representation:

Firstly, we should define the term ”tight frame”. A countable
function subset X ⊂ L2(R) is called a tight frame of L2(R) if
∀f ∈ L2(R)

f =
∑
h∈X

〈f, h〉h (12)

or equivalently,

||f ||2 =
∑
h∈X

|〈f, h〉|2, ∀f ∈ L2(R)

LECTURE NOTES - Chapter 4 - Induced Norms on IPS - The L2

IPS: 〈f, g〉 =
∫
t∈R f(t) ¯g(t)dt is the inner product on the respective

inner product space (IPS), L2(R) and ||.|| =
√
〈f, g〉 is a valid norm

and it is the respective induced norm.
Given a finite set Φ = {φ1, ..., φr} ⊂ L2(R), a wavelet system is

defined as collection of shifts and dilations of the elements of set Φ:

X(Φ) = {2
1
2 φj(2kx− l) : 1 ≤ j ≤ r ; k, l ∈ Z}

when X(Φ) forms a tight frame it is called as a wavelet tight frame
and φj is a (tight) framelet. Any orthogonal basis in L2(R) is a
tight frame since every element in L2(R) can be represented as in
(12) using an orthogonal basis.

LECTURE NOTES - Chapter 4 - Orthogonality: In an IPS such
as L2(R) orthogonality is defined as

〈x, y〉 = 0 , x, y ∈ X

denoted as x ⊥ y. A subset of L2(R) is an orthogonal set if

∀x, y,∈ L2(R), x 6= y =⇒ x ⊥ y

LECTURE NOTES - Chapter 4 - Hammel Basis and span: A
linearly independent subset S of L2(R) which is an IPS and a LVS,
is a Hammel basis if Span{S} = L2(R) where span(S) is defined
as the set of all linear combinations of elements of S.

Due to the reasons explained above, a tight frame can be perceived
as generalization of the orthogonal basis where elements do not have
to be orthogonal to each other which brings redundancy to the set
which is verified to be useful in many image processing applications
such as deblurring. [8]

To construct a compactly supported wavelet tight frames X(Φ):
1) Obtain a compactly supported refinable function ψ ∈ L2(R)

with refinement mask (a low pass filter) g0 such that it satisfies
the following:

ψ(x) =
∑
l

g0(l)ψ(2x− l)

2) Given ψ, the construction of a wavelet tight frame is actually to
find an appropriate set of framelets Φ = {φ1, ..., φr} ⊂ L2(R)
defined as:

φj =
∑
l

gj(l)ψ(2x− l) , j = 1, . . . , r

where gj is a high pass filter.
The unitary extension principle states that the system X(Φ)

constitutes a tight frame in L2(R) if: g0, . . . , gr satisfy

γg0(w) ¯γg0(w + βπ)+

r∑
j=1

γgj (w) ¯γgj (w + βπ) = δ(β) , (β = 0, 1)



where γg0(w) =
∑
l g(l)ejlw and δ(β) is the delta function.

In the numerical scheme, framelet transform can be represented by
a matrix W. Using W, frame coefficient vector u is given by

u = Wf

for a vector f. Also, frame reconstruction can be described as:

f = WTu

where WT is the inverse wavelet transformation. Following property
is satisfied for all wavelet transforms:

f = WTWf =⇒ WTW = I

However, if the rows are not orthogonal to each other, we have
WWT 6= I .

For bivariate case, corresponding W can be obtained by using
Kronecker product of corresponding univariate W of size MxN

W ⊗W =

 w11W . . . w1NW
. . .

wM1W . . . wMNW


IV. PROPOSED OPTIMIZATION MODEL

To reconstruct clear image f, we need to solve

min
f
R(f) + F (f)

where R(f) is the regularization term and F(f) is the data fidelity term.
Since images have sparse approximations in the framelet domain,

this prior is used and R(f) = ||Wf ||1 where W is the framelet
decomposition operator.

The data fidelity term F(f) determined by the noise distribution
existing in the measurement i.e. for impulse noise l1 − norm, for
Gaussian noise l2−norm. However, in practical aspects, noise does
not completely belong to a single distribution. Instead, it generally
behaves like a mixture of distributions. Thus, data fidelity term is
selected as lp−norm to account for the different mixtures of noises

F (f) = ||Af − b||pp

where p ∈ [1, 2] is adjusted to minimize the reconstruction error
in the problem above.

LECTURE NOTES - Chapter 4 - Ex. 4.23: On C[a, b], for
1 ≤ p <∞:

‖x‖p =

[∫ b

a

|x(t)|pdt
]1/p

Triangle inequality for this norm is Minkowski inequality for inte-
grals.

Then, complete optimization problem can be stated as

min
f
µ||Wf ||1 +

1

p
||Af − b||pp , p ∈ [1, 2] (13)

A. Algorithm

In this subsection, the numerical algorithm of the complete out-of-
focus deblurring method will be described. Authors adapted a primal-
dual algorithm for (13) since it is a convex l1−norm minimization
problem. (Since W is a linear transformation)

The saddle-point formulation of (13) can be obtained by using the
fact that l1 − norm and l∞ − norm are duals of each other.

||Wf ||1 = max
||d||∞≤1

〈Wf, d〉

Then, we can formulate the saddle point formulation as follows:

min
f

max
d

µ〈Wf, d〉+
1

p
||Af − b|| − δD(d) (14)

where D = {d : ||d||∞ ≤ 1}, δD is the indicator function as
described below

δD(d) = 0, d ∈ D

=∞, , d /∈ D

Proposition 5: Framelet transformation is linear and the induced
norm of its matrix form satisfies the following property:

||W || = 1

Proof: Since WTW = I and ||WT || = ||W || =⇒ ||W || = 1

LECTURE NOTES - Contribution to proof in accordance
with course content: Authors did not provide any additional
information in this proof. However, using the definition of the
induced norm and SVD, we can show the correctness of this
proposition in a better way.

LECTURE NOTES - Chapter 2 - Thm 2.5: Let W = UΣV ∗

be the SVD decomposition of the framelet transform matrix W. We
can show that the induced norm of W is equal to its largest singular
value. Thm 2.5 states that:

||W || = max
||x||2=1 , x⊥v1,...,vk

||Wx||22 = σ2
k+1 , k = 0, . . . , n

=⇒ max
||x||2=1

||Wx||22 = ||W ||2 = σ2
1 if k = 0

where ||W ||2 = ||W || is the induced norm of the matrix W.
Proof Thm 2.5.: Let z = Ṽ ∗x. Then, ||z||22 = x∗Ṽ Ṽ ∗x = ||x||22.

Thus,

max
||x||2=1 , x⊥v1,...,vk

||Wx||22 = max
||z||2=1 , z1=...=zk=0

||WṼ z||22

= max
||z||2=1 , z1=...=zk=0

||ŨΣ̃z||22

Proof of Proposition 5 continued:
Using the fact that ||Ũx||22 = x∗Ũ∗Ũx = ||x||22, we obtain

max
||z||2=1 , z1=...=zk=0

||ŨΣ̃z||22 = max
||z||2=1 , z1=...=zk=0

||Σ̃z||22

max
||z||2=1

n∑
l=k+1

σ2
l z

2
l ≤ σ2

k+1

n∑
k=1

z2
k = σ2

k+1

with equality if zk+1 = 1, zj = 0 for j 6= k + 1.
Using the result of this theorem and the SVD of W,

U∗V Σ∗U∗ = UΣ2U∗ = I =⇒ σ2
1 = 1

and
||W ∗|| = ||V ΣU∗|| = ||W || = ||UΣV ∗|| = σ1

=⇒ ||W || = 1

Last step is to apply a primal-dual algorithm [13] to formulation
(14) since it is proper, convex and lower semi-continuous.

Regular primal-dual algorithm on (14) can be utilized as follows
[2]:



1)

di+1 = arg max
d

µ
〈
Wf i+1,d

〉
− δD(d)− 1

2τ i

∥∥∥d− di
∥∥∥2

(15)
2)

f i+1 = arg min
f
µ
〈
Wf ,di+1

〉
+

1

p
‖Af−b‖pp+

1

2ζi

∥∥∥f − f i
∥∥∥2

(16)
3)

f i+1 = f i+1 + θi
(
f i+1 − f i

)
(17)

V. RESULTS

Firstly, I will provide the synthesized experimental results and
results on natural images of the main paper and secondly, I will
provide the results that I obtained related to the blur map estimation
and complete deblurring method.

A. Results of the main paper

Synthesized image experiments for two types of blur maps and
comparisons of reconstruction with the state-of-the-art methods:

Fig. 4: The blur maps used to obtain synthesized measurements; (A):
Left blur map (B): Right blur map [1]

Fig. 5: Reconstruction comparisons from both blur types A and B,
first image [1]

Fig. 6: Reconstruction comparisons from both blur types A and B,
second image [1]

Fig. 7: SSIM and PSNR comparisons of both methods for the
synthesized experimental tests, NOTE: In the PSNR and SSIM pots,
Figure 6 is equal to the Figure 5., Figure 7 is equal to the Figure 6.
in this final report [1]

B. Own results:
In order to implement the method own my own, firstly, I blurred

the left top quadrant of a natural image with a Gaussian kernel and
applied blur map acquisition method on top of it.

After obtaining the blur map and refining it as proposed, obtained
results are pretty similar to results in the main paper and we can see
that the method captures most of the additional blur information on
left top quadrant.

Then, I implemented the proposed optimization algorithm using
stochastic gradient descent method for optimization instead of primal-
dual algorithm. However, one thing to note is that my implementation
is most probably fairly suboptimal since there are lots of open
parameters to be optimized in the original proposed method where no
information about them is shared in the paper itself. Nevertheless, my
implementation of the overall method managed to deblur the image
to some extent. Since I applied the method on a natural image where
I did not add any additional blur, no quantitative measuring result
can be provided.
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(a) Original image

(b) Left top region blurred image

(c) Rough blur map of the blurred image

(d) Refined blur map of the blurred image

Fig. 8: Original (a), left top quadrant blurred image (b), rough (c)
and refined blur maps (d) where wx = 7, β = 2 as in the original
work

Fig. 9: Own implementation result on a natural image using the
method in the paper with gradient descent optimization used instead
of primal-dual algorithm for optimization


