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Abstract—Recently, generative models are used to obtain a
framework to provide photo-realistic images for super-resolution
by learning the distribution of the dataset. Despite having
visually attractive images, they do not provide scientifically
reliable results, and there isn’t any method developed for super-
resolution which takes the resolution into consideration. In this
context, we propose a new loss function for generative adversarial
training that produces images correlated at different spatial
frequencies with their ground truth high frequency counterparts.
We compare the training results obtained by using our loss
function with the state-of-the art results and see that our loss
function provides much better results in higher frequencies while
keeping the same quality for lower frequencies. Additionally, our
loss function eliminates the high frequency artifacts generated by
current GAN models.

I. INTRODUCTION

Super-resolution (SR) problem is the task of estimating
a high-resolution (HR) image from its low-resolution (LR)
counterpart and it gathered significant consideration from the
computer vision research community [1], [2]. SR has the
ill-posed nature due to under-determined structure. Absent
texture details in LR image lead to missing texture details
in reconstructed SR image and there are infinitely many
reconstructions for a given LR image which makes SR an
ill-posed problem.

Classical approaches to solve SR is based on filtering
approaches, e.g. linear, bi-cubic or Lanczos filtering [3].
These approaches are very fast but they yield solutions with
overly smooth textures. There are more powerful methods
than classical approaches such as in Glasner et al. [4], they
exploit redundancies across scales within the image in self-
similarity paradigm where self dictionaries are learned. Gu et
al. [5] proposed a convolutional sparser coding approach that
improves consistency by considering whole image not only
overlapping patches.

There are many other approaches like neighborhood embed-
ding approaches [6], combining an edge-directed SR based on
a gradient profile prior [7]. However, in this work, we study
convolutional neural network based SR algorithms which have
superior performance. In Wang et al. [8], they used their feed-
forward network architecture based on the learned iterative
shrinkage and thresholding. Dong et al. [9] trained three layer
fully connected network to learn a mapping between bi-cubic
interpolation to high resolution image. Later, it was shown that
learning the up-scaling filters directly increases performance
both in terms of accuracy and speed [10], [11]. However, these
methods commonly minimize MSE between the reconstructed
HR and the ground truth. Even though minimizing MSE

maximizes the peak signal-to-noise-ratio (PSNR), it lacks the
ability to capture perceptually relevant differences [12]. As
depicted in Figure 1, the MSE-based solutions lead to overly
smooth reconstructions because of the pixel-wise average of
possible solutions. Therefore Ledig et al. [12], which is of
also greatest interest for this work, suggests to use generate
adversarial networks to push the reconstructions closer to
the natural image manifold to produce perceptually more
convincing reconstructions.

Fig. 1: Illustration of patches from the natural image manifold
and super-resolved patches obtained with MSE and GAN from
[12].

Ledig et al. [12] provides a framework for using GANs
in the context of super-resolution. They developed a new
perceptual loss where it consists of two parts: (i) content loss
and (ii) adversarial loss. It can be seen as a regularized loss
form where content loss as the data fidelity is calculated based
on MSE and adversarial loss as the regularizer is calculated
based on the discriminator output.

In this work, we develop a new loss function by further
developing Ledig et al. [12]’s perceptual loss. In the super-
resolution literature including deep learning based algorithms,
there isn’t any loss metric that is related to any kind of reso-
lution definition. This is a fundamentally missing component
since the SR problem naturally tries to increase the lower
resolution to the higher resolution.

To introduce a loss metric based on a resolution definition,
Fourier ring correlation (FRC) [13], which measures the
degree of correlation of two images at different spatial frequen-
cies, is chosen to be implemented since recent work suggests
that they can be utilized in image restoration tasks such as
denoising and deconvolution to design powerful algorithms
[14]. Although this metric has been heavily used in certain
microscopy applications, it didn’t gather any attention for deep
learning research or other imaging modalities.



II. DATASET

In this work, the dataset provided by Visual Object Classes
Challenge 2012 (VOC2012) [15] is used for generative net-
work training and testing. The dataset can be used for classifi-
cation/detection, segmentation, action classification and person
layout taster. There are a significant number of different types
of visual objects in realistic scenes in the data-set. In our
setting, the images from the data-set are considered as high
resolution ground truth data. Low resolution counter parts are
obtained by applying an anti-aliasing filter followed by an
down-sampling operation.

Fig. 2: Several examples from the dataset [15].

III. BACKGROUND

A. Generative Adversarial Networks

Adversarial network architecture is introduced by Goodfel-
low et al. [16]. They define a discriminator network DθD and
a generator network GθG which these networks are used to
optimize in an alternating manner to solve the adversarial min-
max problem:

min
ΘG

max
ΘD

EIHR∼ptrain(IHR)

[
logDθD (I

HR)
]
+

EILR∼pG(ILR)

[
log(1−DθD (G(θG)I

HR))
]

The fundamental insight behind this formulation is that it
allows one to train a generative model G with the goal of
tricking a differentiable discriminator D that is also trained
simultaneously to distinguish super-resolved images from real
HR. By following this approach, a generator can be learnt to
create solutions that are highly similar to real HR i.e. close to
the natural image manifold. This leads to perceptually superior
solutions and this is in contrast to SR reconstructions produced
by minimizing over MSE error.

B. Fourier Ring Correlation

FRC measures the normalized cross-correlation in the
Fourier domain as a function of spatial frequency:

FRC(ri) =

(∑
r∈ri

F1(r) · F2(r)
∗

)
/

√∑
r∈ri

F 2
1 (r) · F 2

2 (r)


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where F1 and F2 are the 2D Fourier transforms of the two
images in polar coordinates, r is the radius in the frequency
domain where origin corresponds to DC, and ri is the set of
spatial frequencies included in the ith ring.

Obtaining the FRC curve for a pair of images using (1) is
illustrated in Figure 3. Two rings depicted in the Figures 3c-
3d correspond to the vertical lines given in Figure 3e. Since
it is normalized, the maximum value of FRC is 1, and we are
taking the real value of the complex correlation. FRC curve
can be used to determine the resolution of an image by using
a threshold. Common thresholds include 0.5, 0.143 and 2-
sigma criterion. See [17] for a detailed discussion of different
threshold criteria.

(a) (b) (c) (d)

(e)

Fig. 3: (a) Image 1 (b) Image 2 (c) Fourier transform of image
1 (d) Fourier transform of image 2 (e) FRC curve.

FRC, together with its 3D extension Fourier shell correlation
(FSC), have been used for determining the resolution in
various microscopy applications such as fluorescence light
microscopy [18], cryo-electron microscopy [13], [19], and
X-ray imaging microscopy [20]. It has also recently been
utilized as a tool in image restoration problems like blind
deconvolution and denoising [14].

IV. PROPOSED APPROACH

A. Network Architecture

The network architecture is chosen as in Figure 4. It is
the identical network structure as [12]. By this way, a fair
comparison of our new loss function to their loss function
will be obtained.

Specifically, there is a deep generator network with B resid-
ual blocks with identical layout. There are two convolutional
layers with small 3× 3 kernels and 64 feature maps followed
by batch-normalization layers and parametric ReLU as the
activation layers. The resolution of the input image is increased
with two trained sub-pixel convolution layers. In order to
distinguish real HR from super-resolved images, there is a
discriminator which is shown in Figure 4. It contains eight
convolutional layers with an increasing number of 3× 3 filter
kernels, increasing by a factor of 2 from 64 to 512 kernels.
Additionally, image resolution is reduced by using strided
convolutions.



Fig. 4: Architecture of Generator and Discriminator from [12]
where k is the kernel size, n is the number of feature maps
and s is the stride.

B. Generator Losses

1) FRC loss: To implement FRC loss, we modified the
loss function existing in SR-GAN [12] and obtained lmod as
follows:

lmod = lcontent + λlAdv + γlFRC, (2)

where the lFRC is given as

lFRC = |1− Re{FRC(r)}|

=
∑
i

(1− Re{FRC(ri)})2 (3)

where r ∈ Rd, 1 ∈ Rd.
Since autograd of Pytorch [21] does not allow automatic

differentiation over complex numbers, we had to implement
the FRC loss by explicitly computing the real and imaginary
components of the complex values in the FRC computations.
To this end, we implemented complex multiplication, addition,
and division modules which make use of 2D real valued
tensors where each dimension stores the real and the imaginary
components, respectively. By doing so, we were able to
utilize the automatic differentiation to update the generator
parameters.

2) L2-loss in image domain: In (2), lcontent includes L2-
loss in image domain and is defined as

lMSE =
1

r2WH

rW∑
x=1

rH∑
y=1

(IHRx,y −GθG(ILRx,y ))2

where r is the down-sampling factor, W is the width of LR,
H is the height of LR.

3) Content loss using a pre-trained network: The second
component of (2) is instead of relying pixel-wise losses, we
use a pre-trained 19 layer VGG and define VGG loss as the
euclidean distance between final feature representations:

lV GG =
1

Wi,jHi,j

Wi,j∑
x=1

Hi,j∑
y=1

(φi,j(I
HR
x,y )− φi,j(GθG(ILRx,y )))2

where φi,j indicate the feature map, Wi,j and Hi,j describe
the dimensions of the respective feature maps.

4) TV loss: Another component that is used in training the
generator is total variation regularization which is defined as

lTV =
∑
i,j

√
ISRi+1,j − ISRi,j |2 + |ISRi,j+1 − ISRi,j |2

5) Adversarial loss: In addition to previous losses, there is
the adversarial loss which encourages our generator network
to favor solutions on the natural image manifold.

lAdv =

N∑
n=1

−logDθD (GθG(I
LR))

V. EXPERIMENTS AND RESULTS

A. FRC experiments

Here we present two experiments that provide intuition on
how FRC works.

1) Noise addition: In this experiment we add white Gaus-
sian noise with standard deviations (STD) of 0.05, 0.2, and
0.5 to a reference image and plot at the resulting FRC curves.
The images and the FRC curves are given in Figure 5.

(a) (b)

Fig. 5: (a) Reference and the noisy images (b) FRC curves.

The first observation in Figure 5b is that, as the spatial
frequency increases, FRC decreases. The explanation is that
white noise has the same energy at all frequencies, however,
natural images tend to have less energy at higher frequencies.
So, the higher frequency content gets buried under noise. The
second observation is that the FRC gets lower as the noise level
gets higher. The energy argument also applies here. Higher
noise energy leads to lower correlation.

2) Blurring and noise addition: In this experiment we first
apply Gaussian blur with kernel STDs of 1, 3, and 5 pixels
to a reference image, then add white Gaussian noise with the
STD of 0.05, and plot the resulting FRC curves. The images
and the FRC curves are given in Figure 6.

As higher levels of blur suppresses high frequencies in the
signal more, we see lower FRC values for higher levels of
blur.

B. Verification of the effect of higher frequency content on the
PSNR and SSIM metrics

It is well-known that the most of the energy is located
around the lower frequencies in the Fourier domain for natural
images. A typical example is illustrated in Fig. 3.



(a) (b)

Fig. 6: (a) Reference and the blurry images (b) FRC curves.

Also, cumulative fraction of total energy contained in the
circle of radius r in the Fourier domain for all test dataset
is shown in Fig. 7. Moreover, our specific implementation of

Fig. 7: Cumulative fraction of total energy contained in radius
r for all test dataset.

the FRC loss puts larger importance on the higher frequencies
since we compute the MSE loss with respect to 1 for every
r, which is the maximum possible correlation value, and the
FRC curve decays as r increases. A possible concern that we
had was related to FRC loss causing suboptimal performance
over the lower frequencies, since it does not take how much
of energy is located at any radius r into account and treats
correlations at each radius equivalently. Firstly, we tried to
show that it is vitally important to recover higher frequencies.
For this purpose, we conducted the following experiment:
We reconstructed the images by only using the frequency
components included in the circle or radius r and discarded the
rest of the frequencies. Then, we obtained the average SSIM
and PSNR values for each r over the test dataset that we used
for assessing the performance of our proposed method. By
doing so, we were able to verify that a significant improvement
can be obtained by recovering high frequencies better. PSNR
and SSIM vs. r plots are provided in Fig. 8 and 9. Even
after including the 97% of the total energy, it is only possible
to obtain an SSIM around 0.6 and a PSNR of 23 dB. This
signals the importance of correct recovery of high frequency
components.

Fig. 8: Average PSNR (in dB) vs. r for the test dataset.

Fig. 9: Average SSIM vs. r for the test dataset.

C. Comparison across different methods

1) l2 FRC loss: After training SRGAN and our modifi-
cation SRGAN-FRC on the patches obtained from BSDS300
dataset, we compared the mean FRC curves obtained from the
test dataset. For this task, 4x upscaling was needed to perform
super-resolution. In our comparison, we also added the results
obtained using traditional interpolation methods of bilinear and
bicubic. The comparison can be seen in Fig. 10.

Fig. 10: Average FRC curves for different super-resolution
methods.

Without the FRC loss, lFRC, even bilinear and bicubic
interpolations provide better correlations compared to SRGAN
for higher frequency rings. This can be caused by the hallu-
cinated details in high frequencies and artificial background
textures that occur for almost all test images for plain SRGAN
implementation.



Once lFRC is incorporated into the training procedure, we
were able to obtain superior performance over all values of
r compared to all other methods. While improving over the
higher frequencies, the method does not suffer any drawbacks
on lower frequencies. Results for several random patches
obtained from the test dataset can be observed in Fig. 11. An
important note is that due to the instabilities after the FRC loss
implementation in training phase, we were able to use 1000
epochs for SRGAN training but only 650 epochs for training
the SRGAN-FRC with the same learning rate and optimizer.

Fig. 11: Comparison of several patches obtained from the
test dataset for each method: (i) Original high resolution, (ii)
SRGAN, (iii) SRGAN-FRC, and (iv) bicubic interpolation.

As expected, bicubic interpolation provides the most smooth
result. SRGAN seems to solve this problem by providing
sharper features, however, it adds an artificial high frequency
background texture to almost all patches. Also, as shown
in Fig. 10, these sharper features are not correlated with
the original image content in the Fourier domain. While
suppressing these texture artifacts to a great extent, SRGAN-
FRC results still provide sharper images.

2) Concentrated l2 FRC loss: For mission critical appli-
cations, it can be desired to recover certain frequency bands,
and hence certain resolution levels, especially better. The loss
that we propose is flexible in that sense. Just as applying a
filtered error term in spatial domain, it is possible to constrain
our loss to be computed on certain frequency domain rings.
Assuming the set D = {r1, . . . , rn} as the radii of the rings,
the loss takes the following form

lFRC =
∑
ri∈D

(1− Re{FRC(ri)})2 (4)

where r ∈ Rd, 1 ∈ Rd.
Considering the image size as m×m, we conducted exper-

iments by selecting the set D as the rings with radii between
r = m/6 and r = m/3. The comparison of the average FRC
curves for concentrated and regular implementations of l2 FRC
losses is provided in Fig. 12.

Fig. 12: Average FRC curves for concentrated and regular loss
functions. Concentrated range of r is between the vertical red
lines.

As expected, the concentrated loss provided suboptimal
performances for the high frequencies due to not including
those radii in our loss. In the concentrated region, both
concentrated and regular l2-norm losses provide comparable
results. However, our expectation was to obtain better results
which was not realized through this experiment. Nevertheless,
the reason can still be related to the instabilities of the training
process for concentrated case and we are planning to conduct
more experiments regarding this method.

3) l1 FRC loss: Instead of computing the squared error,
we also experimented on using the absolute error as

lFRC = ||1− Re{FRC(r)}||1
=
∑
i

|1− Re{FRC(ri)}| (5)

where r ∈ Rd, 1 ∈ Rd. This version of loss function turned
out to be unstable during the training process compared to the
squared error and we were able to perform training using 250
epochs. A comparison of average FRC curves can be seen in
Fig.13.

We observed slightly suboptimal performance in terms of
FRC values when we used l1-norm error. However, this
suboptimality can be attributed to the unstable nature of the
training process and less number of epochs used because of
it. Main drawback of l1 loss was a shift in the color of the
outputs which can be seen in Fig. 14.

4) Other performance metrics comparison: Finally, we
computed the average PSNR (in dB) and SSIM over test set
results to compare the different loss functions and methods on
common performance metrics. To focus on best performing



Fig. 13: Average FRC curves for different loss functions.

Fig. 14: Comparison of a full image (Top) and two patches
obtained from the test dataset for each method: (i) Original
high resolution, (ii) SRGAN, (iii) SRGAN-FRC, and (iv)
SRGAN-FRC L1.

methods, concentrated l2 norm FRC loss and bilinear interpo-
lation results are not displayed. As shown in Table I, the best
results for both PSNR and SSIM is obtained using l2 FRC
and l1 FRC losses, respectively.
TABLE I: Average accuracy results for test images for the
algorithms 4x super-resolution.

SRGAN SRGAN-FRC SRGAN-FRC L1 Bicubic

PSNR (dB) 24.162 24.079 24.245 24.087

SSIM 0.699 0.704 0.690 0.689

VI. DISCUSSION AND CONCLUSIONS

Recently, generative models provided a framework to pro-
vide photo-realistic images for super-resolution by learning the
distribution of the dataset. However, having visually plausible
images does not necessarily translate into scientifically reliable
results, and usually, methods developed for super-resolution
in this context do not take the resolution directly into consid-
eration. Considering these aspects, we proposed a new loss
function for GAN training procedure that produces images

correlated at different spatial frequencies with their ground
truth high frequency counterparts.
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